Visualizing Reaction Fronts and Transport Limitations in Solid-State Li-S Batteries via Operando Neutron Imaging

被引:33
|
作者
Bradbury, Robert [1 ,2 ]
Dewald, Georg F. [3 ]
Kraft, Marvin A. [4 ,5 ]
Arlt, Tobias [1 ]
Kardjilov, Nikolay [2 ]
Janek, Juergen [3 ]
Manke, Ingo [2 ]
Zeier, Wolfgang G. [4 ,5 ,6 ]
Ohno, Saneyuki [7 ]
机构
[1] Tech Univ Berlin, Inst Mat Sci & Technol, Str 17,Juni 135, D-10623 Berlin, Germany
[2] Helmholtz Zent Berlin Materialien & Energie HZB, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[3] Justus Liebig Univ Giessen, Inst Phys Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[4] Justus Liebig Univ Giessen, Ctr Mat Res LaMa, Heinrich Buff Ring 16, D-35392 Giessen, Germany
[5] Forschungszentrum Julich, Inst Energie & Klimaforsch IEK, IEK 12 Helmholtz Inst Munster, D-48149 Munster, Germany
[6] Univ Munster, Inst Inorgan & Analyt Chem, Correnstr 30, D-48149 Munster, Germany
[7] Kyushu Univ, Grad Sch Engn, Dept Appl Chem, 744 Motooka, Nishi ku, Fukuoka 8190395, Japan
关键词
composite electrodes; in situ neutron tomography; Li-S batteries; operando neutron radiography; solid-state batteries; LITHIUM-ION BATTERIES; RADIOGRAPHY;
D O I
10.1002/aenm.202203426
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The exploitation of high-capacity conversion-type materials such as sulfur in solid-state secondary batteries is a dream combination for achieving improved battery safety and high energy density in the push toward a sustainable future. However, the exact reason behind the low rate-capability, bottlenecking further development of solid-state lithium-sulfur batteries, has not yet been determined. Here, using neutron imaging, the spatial distribution of lithium during cell operation is directly visualized and it is shown that sluggish macroscopic ion transport within the composite cathode is rate-limiting. Observing a reaction front propagating from the separator side toward the current collector confirms the detrimental influence of a low effective ionic conductivity. Furthermore, irreversibly concentrated lithium in the vicinity of the current collector, revealed via state-of-charge-dependent tomography, highlights a hitherto-overlooked loss mechanism triggered by sluggish effective ionic transport within a composite cathode. This discovery can be a cornerstone for future research on solid-state batteries, irrespective of the type of active material.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Toward High-Capacity Li-S Solid-State Batteries: The Role of Partial Ionic Transport in the Catholyte (vol 9, pg 3547, 2024)
    Woolley, Henry M.
    Lange, Martin
    Nazmutdinova, Elina
    Vargas-Barbosa, Nella M.
    ACS ENERGY LETTERS, 2025,
  • [32] In Situ and In Operando Techniques to Study Li-Ion and Solid-State Batteries: Micro to Atomic Level
    Golozar, Maryam
    Gauvin, Raynald
    Zaghib, Karim
    INORGANICS, 2021, 9 (11)
  • [33] Fluoride-Rich Solid Electrolyte Membrane in Solid-State Li-S Batteries: Improvement of Lithium Cycle Stability and Shuttle Effects
    An, Yong
    Cheng, Yao
    Wang, Shengping
    Yu, Jingxian
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (03) : 2786 - 2794
  • [34] Boosting fast interfacial Li+ transport in solid-state Li metal batteries via ultrathin Al buffer layer
    Shengnan Zhang
    Qing Sun
    Guangmei Hou
    Jun Cheng
    Linna Dai
    Jianwei Li
    Lijie Ci
    Nano Research, 2023, 16 (5) : 6825 - 6832
  • [35] Analysis of Charge Carrier Transport Toward Optimized Cathode Composites for All-Solid-State Li-S Batteries
    Dewald, Georg F.
    Ohno, Saneyuki
    Hering, Joachim G. C.
    Janek, Juergen
    Zeier, Wolfgang G.
    BATTERIES & SUPERCAPS, 2021, 4 (01) : 183 - 194
  • [36] Realizing Solid-Phase Reaction in Li-S Batteries via Localized High-Concentration Carbonate Electrolyte
    He, Mengxue
    Li, Xia
    Yang, Xiaofei
    Wang, Changhong
    Zheng, Matthew Liu
    Li, Ruying
    Zuo, Pengjian
    Yin, Geping
    Sun, Xueliang
    ADVANCED ENERGY MATERIALS, 2021, 11 (31)
  • [37] Recent developments in materials design for all-solid-state Li-S batteries
    Phuc, Nguyen Huu Huy
    Hikima, Kazuhiro
    Muto, Hiroyuki
    Matsuda, Atsunori
    CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2022, 47 (03) : 283 - 308
  • [38] Healable and conductive sulfur iodide for solid-state Li–S batteries
    Jianbin Zhou
    Manas Likhit Holekevi Chandrappa
    Sha Tan
    Shen Wang
    Chaoshan Wu
    Howie Nguyen
    Canhui Wang
    Haodong Liu
    Sicen Yu
    Quin R. S. Miller
    Gayea Hyun
    John Holoubek
    Junghwa Hong
    Yuxuan Xiao
    Charles Soulen
    Zheng Fan
    Eric E. Fullerton
    Christopher J. Brooks
    Chao Wang
    Raphaële J. Clément
    Yan Yao
    Enyuan Hu
    Shyue Ping Ong
    Ping Liu
    Nature, 2024, 627 : 301 - 305
  • [39] Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li-S batteries
    Wang, Daiwei
    Gwalani, Bharat
    Wierzbicki, Dominik
    Singh, Vijay
    Jhang, Li-Ji
    Rojas, Tomas
    Kou, Rong
    Liao, Meng
    Ye, Lei
    Jiang, Heng
    Shan, Shuhua
    Silver, Alexander
    Ngo, Anh T.
    Du, Yonghua
    Li, Xiaolin
    Wang, Donghai
    NATURE MATERIALS, 2025, 24 (02) : 243 - 251
  • [40] Nanostructuring at the interface for efficient and high capacity-performing free standing electrodes in all solid-state Li-S batteries
    El-Shinawi, Hany
    Cussen, Edmund
    Corr, Serena
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255