Visualizing Reaction Fronts and Transport Limitations in Solid-State Li-S Batteries via Operando Neutron Imaging

被引:33
|
作者
Bradbury, Robert [1 ,2 ]
Dewald, Georg F. [3 ]
Kraft, Marvin A. [4 ,5 ]
Arlt, Tobias [1 ]
Kardjilov, Nikolay [2 ]
Janek, Juergen [3 ]
Manke, Ingo [2 ]
Zeier, Wolfgang G. [4 ,5 ,6 ]
Ohno, Saneyuki [7 ]
机构
[1] Tech Univ Berlin, Inst Mat Sci & Technol, Str 17,Juni 135, D-10623 Berlin, Germany
[2] Helmholtz Zent Berlin Materialien & Energie HZB, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[3] Justus Liebig Univ Giessen, Inst Phys Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[4] Justus Liebig Univ Giessen, Ctr Mat Res LaMa, Heinrich Buff Ring 16, D-35392 Giessen, Germany
[5] Forschungszentrum Julich, Inst Energie & Klimaforsch IEK, IEK 12 Helmholtz Inst Munster, D-48149 Munster, Germany
[6] Univ Munster, Inst Inorgan & Analyt Chem, Correnstr 30, D-48149 Munster, Germany
[7] Kyushu Univ, Grad Sch Engn, Dept Appl Chem, 744 Motooka, Nishi ku, Fukuoka 8190395, Japan
关键词
composite electrodes; in situ neutron tomography; Li-S batteries; operando neutron radiography; solid-state batteries; LITHIUM-ION BATTERIES; RADIOGRAPHY;
D O I
10.1002/aenm.202203426
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The exploitation of high-capacity conversion-type materials such as sulfur in solid-state secondary batteries is a dream combination for achieving improved battery safety and high energy density in the push toward a sustainable future. However, the exact reason behind the low rate-capability, bottlenecking further development of solid-state lithium-sulfur batteries, has not yet been determined. Here, using neutron imaging, the spatial distribution of lithium during cell operation is directly visualized and it is shown that sluggish macroscopic ion transport within the composite cathode is rate-limiting. Observing a reaction front propagating from the separator side toward the current collector confirms the detrimental influence of a low effective ionic conductivity. Furthermore, irreversibly concentrated lithium in the vicinity of the current collector, revealed via state-of-charge-dependent tomography, highlights a hitherto-overlooked loss mechanism triggered by sluggish effective ionic transport within a composite cathode. This discovery can be a cornerstone for future research on solid-state batteries, irrespective of the type of active material.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Investigation of Li accumulations in LLZO based solid state batteries via operando neutron imaging and ex-situ correlative structural and chemical analysis
    Cressa, Luca
    Boillat, Pierre
    Gerard, Mathieu
    Sun, Yanyan
    Sharma, Sayantan
    De Castro, Olivier
    Nojabaee, Maryam
    Schmitz, Guido
    Wirtz, Tom
    Eswara, Santhana
    ELECTROCHIMICA ACTA, 2024, 494
  • [22] Stabilized Li-S batteries with anti-solvent-tamed quasi-solid-state reaction
    Liu, Yatao
    Xu, Linhan
    Yu, Yongquan
    He, Mengxue
    Zhang, Han
    Tang, Yanqun
    Xiong, Feng
    Gao, Song
    Li, Aijun
    Wang, Jianhui
    Xu, Shenzhen
    Aurbach, Doron
    Zou, Ruqiang
    Pang, Quanquan
    JOULE, 2023, 7 (09) : 2074 - 2091
  • [23] Compatibility of Halide Electrolytes in Solid-State Li-S Battery Cathodes
    Yanagihara, Shoma
    Huebner, Jan
    Huang, Zheng
    Inoishi, Atsushi
    Akamatsu, Hirofumi
    Hayashi, Katsuro
    Ohno, Saneyuki
    CHEMISTRY OF MATERIALS, 2024, 37 (01) : 109 - 118
  • [24] From non-aqueous liquid to solid-state Li-S batteries: design protocols, challenges and solutions
    Zhang, Yuxuan
    Qin, Fei
    Baek, Jinwook
    Lee, Dong Hun
    Kim, Minyoung
    Song, Han-Wook
    Lee, Sunghwan
    MATERIALS ADVANCES, 2024, 5 (22): : 8772 - 8786
  • [25] Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design
    Yang, Xiaofei
    Luo, Jing
    Sun, Xueliang
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (07) : 2140 - 2195
  • [26] Tuning ionic conductivity to enable all-climate solid-state Li-S batteries with superior performances
    Wei, Chaochao
    Yu, Chuang
    Peng, Linfeng
    Zhang, Ziqi
    Xu, Ruonan
    Wu, Zhongkai
    Liao, Cong
    Zhang, Wei
    Zhang, Long
    Cheng, Shijie
    Xie, Jia
    MATERIALS ADVANCES, 2022, 3 (02): : 1047 - 1054
  • [27] Fast ion-conduction in solid-state Li-S batteries realized by an interfacial-bridge strategy
    Yang, Jing
    Li, Yuxuan
    Zhu, Kangshuai
    Pan, Qinmin
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (34) : 22765 - 22774
  • [28] Progress of the Interface Design in All-Solid-State Li-S Batteries
    Yue, Junpei
    Yan, Min
    Yin, Ya-Xia
    Guo, Yu-Guo
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)
  • [29] Room-Temperature Solid-State Polymer Electrolyte in Li-LiFePO4, Li-S and Li-O2 Batteries
    Marangon, Vittorio
    Minnetti, Luca
    Barcaro, Edoardo
    Hassoun, Jusef
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (45)
  • [30] A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery
    Huang, Xiao
    Liu, Cai
    Lu, Yang
    Xiu, Tongping
    Jin, Jun
    Badding, Michael E.
    Wen, Zhaoyin
    JOURNAL OF POWER SOURCES, 2018, 382 : 190 - 197