Visualizing Reaction Fronts and Transport Limitations in Solid-State Li-S Batteries via Operando Neutron Imaging

被引:33
|
作者
Bradbury, Robert [1 ,2 ]
Dewald, Georg F. [3 ]
Kraft, Marvin A. [4 ,5 ]
Arlt, Tobias [1 ]
Kardjilov, Nikolay [2 ]
Janek, Juergen [3 ]
Manke, Ingo [2 ]
Zeier, Wolfgang G. [4 ,5 ,6 ]
Ohno, Saneyuki [7 ]
机构
[1] Tech Univ Berlin, Inst Mat Sci & Technol, Str 17,Juni 135, D-10623 Berlin, Germany
[2] Helmholtz Zent Berlin Materialien & Energie HZB, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[3] Justus Liebig Univ Giessen, Inst Phys Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[4] Justus Liebig Univ Giessen, Ctr Mat Res LaMa, Heinrich Buff Ring 16, D-35392 Giessen, Germany
[5] Forschungszentrum Julich, Inst Energie & Klimaforsch IEK, IEK 12 Helmholtz Inst Munster, D-48149 Munster, Germany
[6] Univ Munster, Inst Inorgan & Analyt Chem, Correnstr 30, D-48149 Munster, Germany
[7] Kyushu Univ, Grad Sch Engn, Dept Appl Chem, 744 Motooka, Nishi ku, Fukuoka 8190395, Japan
关键词
composite electrodes; in situ neutron tomography; Li-S batteries; operando neutron radiography; solid-state batteries; LITHIUM-ION BATTERIES; RADIOGRAPHY;
D O I
10.1002/aenm.202203426
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The exploitation of high-capacity conversion-type materials such as sulfur in solid-state secondary batteries is a dream combination for achieving improved battery safety and high energy density in the push toward a sustainable future. However, the exact reason behind the low rate-capability, bottlenecking further development of solid-state lithium-sulfur batteries, has not yet been determined. Here, using neutron imaging, the spatial distribution of lithium during cell operation is directly visualized and it is shown that sluggish macroscopic ion transport within the composite cathode is rate-limiting. Observing a reaction front propagating from the separator side toward the current collector confirms the detrimental influence of a low effective ionic conductivity. Furthermore, irreversibly concentrated lithium in the vicinity of the current collector, revealed via state-of-charge-dependent tomography, highlights a hitherto-overlooked loss mechanism triggered by sluggish effective ionic transport within a composite cathode. This discovery can be a cornerstone for future research on solid-state batteries, irrespective of the type of active material.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Visualizing Lithium Ion Transport in Solid-State Li-S Batteries Using 6Li Contrast Enhanced Neutron Imaging
    Bradbury, Robert
    Kardjilov, Nikolay
    Dewald, Georg F.
    Tengattini, Alessandro
    Helfen, Lukas
    Zeier, Wolfgang G.
    Manke, Ingo
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (38)
  • [2] Deciphering Enhanced Solid-State Kinetics of Li-S Batteries via Te Doping
    Hong, Tae Hwa
    Kee, Joon Young
    Kwon, Dohyeong
    Park, Sangeon
    Kim, Duho
    Lee, Jung Tae
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (10) : 12583 - 12591
  • [3] Understanding Rate and Capacity Limitations in Li-S Batteries Based on Solid-State Sulfur Conversion in Confinement
    Gungor, Ayca Senol
    von Mentlen, Jean-Marc
    Ruthes, Jean G. A.
    Garcia-Soriano, Francisco J.
    Talian, Sara Drvaric
    Presser, Volker
    Porcar, Lionel
    Vizintin, Alen
    Wood, Vanessa
    Prehal, Christian
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (49) : 67651 - 67661
  • [4] Reaction Mechanism Optimization of Solid-State Li-S Batteries with a PEO-Based Electrolyte
    Fang, Ruyi
    Xu, Henghui
    Xu, Biyi
    Li, Xinyu
    Li, Yutao
    Goodenough, John B.
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (02)
  • [5] Perspective of polymer-based solid-state Li-S batteries
    Castillo, Julen
    Qiao, Lixin
    Santiago, Alexander
    Judez, Xabier
    Saenz de Buruaga, Amaia
    Jimenez-Martin, Gonzalo
    Armand, Michel
    Zhang, Heng
    Li, Chunmei
    ENERGY MATERIALS, 2022, 2 (01):
  • [6] Healable and conductive sulfur iodide for solid-state Li-S batteries
    Zhou, Jianbin
    Chandrappa, Manas Likhit Holekevi
    Tan, Sha
    Wang, Shen
    Wu, Chaoshan
    Nguyen, Howie
    Wang, Canhui
    Liu, Haodong
    Yu, Sicen
    Miller, Quin R. S.
    Hyun, Gayea
    Holoubek, John
    Hong, Junghwa
    Xiao, Yuxuan
    Soulen, Charles
    Fan, Zheng
    Fullerton, Eric E.
    Brooks, Christopher J.
    Wang, Chao
    Clement, Raphaele J.
    Yao, Yan
    Hu, Enyuan
    Ong, Shyue Ping
    Liu, Ping
    NATURE, 2024, 627 (8003) : 301 - 305
  • [7] Visualizing interfacial collective reaction behaviour of Li-S batteries
    Zhou, Shiyuan
    Shi, Jie
    Liu, Sangui
    Li, Gen
    Pei, Fei
    Chen, Youhu
    Deng, Junxian
    Zheng, Qizheng
    Li, Jiayi
    Zhao, Chen
    Hwang, Inhui
    Sun, Cheng-Jun
    Liu, Yuzi
    Deng, Yu
    Huang, Ling
    Qiao, Yu
    Xu, Gui-Liang
    Chen, Jian-Feng
    Amine, Khalil
    Sun, Shi-Gang
    Liao, Hong-Gang
    NATURE, 2023, 621 (7977) : 75 - +
  • [8] Rechargeable Solid-State Li-Air and Li-S Batteries: Materials, Construction, and Challenges
    Liu, Yijie
    He, Ping
    Zhou, Haoshen
    ADVANCED ENERGY MATERIALS, 2018, 8 (04)
  • [9] Toward High-Capacity Li-S Solid-State Batteries: The Role of Partial Ionic Transport in the Catholyte
    Woolley, Henry M.
    Lange, Martin
    Nazmutdinova, Elina
    Vargas-Barbosa, Nella M.
    ACS ENERGY LETTERS, 2024, 9 (07): : 3547 - 3556
  • [10] Regulating liquid and solid-state electrolytes for solid-phase conversion in Li-S batteries
    Xing, Chao
    Chen, Hao
    Qian, Shangshu
    Wu, Zhenzhen
    Nizami, Ameer
    Li, Xia
    Zhang, Shanqing
    Lai, Chao
    CHEM, 2022, 8 (05): : 1201 - 1230