Data-Efficient Generation of Protein Conformational Ensembles with Backbone-to-Side-Chain Transformers

被引:7
|
作者
Chennakesavalu, Shriram [1 ]
Rotskoff, Grant M. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2024年 / 128卷 / 09期
关键词
INTRINSICALLY UNSTRUCTURED PROTEINS; ANDROGEN RECEPTOR; TRANSACTIVATION DOMAIN; MODEL; PREDICTION; ROTAMERS; PACKING;
D O I
10.1021/acs.jpcb.3c08195
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Excitement at the prospect of using data-driven generative models to sample configurational ensembles of biomolecular systems stems from the extraordinary success of these models on a diverse set of high-dimensional sampling tasks. Unlike image generation or even the closely related problem of protein structure prediction, there are currently no data sources with sufficient breadth to parametrize generative models for conformational ensembles. To enable discovery, a fundamentally different approach to building generative models is required: models should be able to propose rare, albeit physical, conformations that may not arise in even the largest data sets. Here we introduce a modular strategy to generate conformations based on "backmapping" from a fixed protein backbone that (1) maintains conformational diversity of the side chains and (2) couples the side-chain fluctuations using global information about the protein conformation. Our model combines simple statistical models of side-chain conformations based on rotamer libraries with the now ubiquitous transformer architecture to sample with atomistic accuracy. Together, these ingredients provide a strategy for rapid data acquisition and hence a crucial ingredient for scalable physical simulation with generative neural networks.
引用
收藏
页码:2114 / 2123
页数:10
相关论文
共 50 条
  • [1] PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles
    Li, Da-Wei
    Brueschweiler, Rafael
    JOURNAL OF BIOMOLECULAR NMR, 2012, 54 (03) : 257 - 265
  • [2] PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles
    Da-Wei Li
    Rafael Brüschweiler
    Journal of Biomolecular NMR, 2012, 54 : 257 - 265
  • [3] Ensembles of data-efficient vision transformers as a new paradigm for automated classification in ecology
    S. P. Kyathanahally
    T. Hardeman
    M. Reyes
    E. Merz
    T. Bulas
    P. Brun
    F. Pomati
    M. Baity-Jesi
    Scientific Reports, 12
  • [4] Ensembles of data-efficient vision transformers as a new paradigm for automated classification in ecology
    Kyathanahally, S. P.
    Hardeman, T.
    Reyes, M.
    Merz, E.
    Bulas, T.
    Brun, P.
    Pomati, F.
    Baity-Jesi, M.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [5] Towards Data-Efficient Detection Transformers
    Wang, Wen
    Zhang, Jing
    Cao, Yang
    Shen, Yongliang
    Tao, Dacheng
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 88 - 105
  • [6] Author Correction: Ensembles of data-efficient vision transformers as a new paradigm for automated classification in ecology
    S. P. Kyathanahally
    T. Hardeman
    M. Reyes
    E. Merz
    T. Bulas
    P. Brun
    F. Pomati
    M. Baity-Jesi
    Scientific Reports, 13
  • [7] Ensembles of data-efficient vision transformers as a new paradigm for automated classification in ecology (vol 12, 18590, 2022)
    Kyathanahally, S. P.
    Hardeman, T.
    Reyes, M.
    Merz, E.
    Bulas, T.
    Brun, P.
    Pomati, F.
    Baity-Jesi, M.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] UAV Image Multi-Labeling with Data-Efficient Transformers
    Bashmal, Laila
    Bazi, Yakoub
    Al Rahhal, Mohamad Mahmoud
    Alhichri, Haikel
    Al Ajlan, Naif
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [9] DearKD: Data-Efficient Early Knowledge Distillation for Vision Transformers
    Chen, Xianing
    Cao, Qiong
    Zhong, Yujie
    Zhang, Jing
    Gao, Shenghua
    Tao, Dacheng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12042 - 12052
  • [10] Training data-efficient image transformers & distillation through attention
    Touvron, Hugo
    Cord, Matthieu
    Douze, Matthijs
    Massa, Francisco
    Sablayrolles, Alexandre
    Jegou, Herve
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139 : 7358 - 7367