Reproducibility Starts at the Source: R, Python']Python, and Julia Packages for Retrieving USGS Hydrologic Data

被引:3
|
作者
Hodson, Timothy O. [1 ]
Decicco, Laura A. [2 ]
Hariharan, Jayaram A. [3 ]
Stanish, Lee F. [3 ]
Black, Scott [4 ]
Horsburgh, Jeffery S. [5 ]
机构
[1] US Geol Survey, Cent Midwest Water Sci Ctr, Urbana, IL 61801 USA
[2] US Geol Survey, Upper Midwest Water Sci Ctr, Madison, WI 53726 USA
[3] US Geol Survey, Water Mission Area, Reston, VA 20192 USA
[4] Consortium Univ Advancement Hydrol Sci Inc CUAHSI, Arlington, MA 02476 USA
[5] Utah State Univ, Civil & Environm Engn, Logan, UT 84322 USA
基金
美国国家科学基金会;
关键词
packaged workflows; water data; reproducibility; open science; open data; open source; R; !text type='Python']Python[!/text; Julia; Jupyter; USGS; JUPYTER;
D O I
10.3390/w15244236
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Much of modern science takes place in a computational environment, and, increasingly, that environment is programmed using R, Python, or Julia. Furthermore, most scientific data now live on the cloud, so the first step in many workflows is to query a cloud database and load the response into a computational environment for further analysis. Thus, tools that facilitate programmatic data retrieval represent a critical component in reproducible scientific workflows. Earth science is no different in this regard. To fulfill that basic need, we developed R, Python, and Julia packages providing programmatic access to the U.S. Geological Survey's National Water Information System database and the multi-agency Water Quality Portal. Together, these packages create a common interface for retrieving hydrologic data in the Jupyter ecosystem, which is widely used in water research, operations, and teaching. Source code, documentation, and tutorials for the packages are available on GitHub. Users can go there to learn, raise issues, or contribute improvements within a single platform, which helps foster better engagement and collaboration between data providers and their users.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] RamanSPy: An Open-Source Python']Python Package for Integrative Raman Spectroscopy Data Analysis
    Georgiev, Dimitar
    Pedersen, Simon Vilms
    Xie, Ruoxiao
    Fernandez-Galiana, Alvaro
    Stevens, Molly M.
    Barahona, Mauricio
    ANALYTICAL CHEMISTRY, 2024, 96 (21) : 8492 - 8500
  • [42] TSEA: An Open Source Python']Python-Based Annotation Tool for Time Series Data
    Selzler, Roger
    Chan, Adrian D. C.
    Green, James R.
    2021 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (IEEE MEMEA 2021), 2021,
  • [43] Open-source python']python module for automated preprocessing of near infrared spectroscopic data
    Torniainen, Jari
    Afara, Isaac O.
    Prakash, Mithilesh
    Sarin, Jaakko K.
    Stenroth, Lauri
    Toyras, Juha
    ANALYTICA CHIMICA ACTA, 2020, 1108 : 1 - 9
  • [44] PyMoDAQ: An open-source Python']Python-based software for modular data acquisition
    Weber, S. J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (04):
  • [45] An Open Source Python']Python Library for Anonymizing Sensitive Data (vol 11, 1289, 2024)
    Diaz, Judith Sainz-Pardo
    Garcia, Alvaro Lopez
    SCIENTIFIC DATA, 2024, 11 (01)
  • [46] PyAMARES, an Open-Source Python']Python Library for Fitting Magnetic Resonance Spectroscopy Data
    Xu, Jia
    Vaeggemose, Michael
    Schulte, Rolf F.
    Yang, Baolian
    Lee, Chu-Yu
    Laustsen, Christoffer
    Magnotta, Vincent A.
    DIAGNOSTICS, 2024, 14 (23)
  • [47] Practical Statistics for Data Scientists: 50+Essential Concepts Using R and Python']Python
    Chen, Li-Pang
    TECHNOMETRICS, 2021, 63 (02) : 272 - 273
  • [48] Stream-learn-open-source Python']Python library for difficult data stream batch analysis
    Ksieniewicz, P.
    Zyblewski, P.
    NEUROCOMPUTING, 2022, 478 : 11 - 21
  • [49] rasterMiner: An Open-Source Python']Python Library to Discover Knowledge From Raster Imagery Data
    Veena, Pamalla
    Rage, Uday Kiran
    Ogawa, Yoshiko
    Ohtake, Makiko
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 1160 - 1163
  • [50] Water Data Explorer: An Open-Source Web Application and Python']Python Library for Water Resources Data Discovery
    Bustamante, Giovanni Romero
    Nelson, Everett James
    Ames, Daniel P.
    Williams, Gustavious P.
    Jones, Norman L.
    Boldrini, Enrico
    Chernov, Igor
    Sanchez Lozano, Jorge Luis
    WATER, 2021, 13 (13)