Reproducibility Starts at the Source: R, Python']Python, and Julia Packages for Retrieving USGS Hydrologic Data

被引:3
|
作者
Hodson, Timothy O. [1 ]
Decicco, Laura A. [2 ]
Hariharan, Jayaram A. [3 ]
Stanish, Lee F. [3 ]
Black, Scott [4 ]
Horsburgh, Jeffery S. [5 ]
机构
[1] US Geol Survey, Cent Midwest Water Sci Ctr, Urbana, IL 61801 USA
[2] US Geol Survey, Upper Midwest Water Sci Ctr, Madison, WI 53726 USA
[3] US Geol Survey, Water Mission Area, Reston, VA 20192 USA
[4] Consortium Univ Advancement Hydrol Sci Inc CUAHSI, Arlington, MA 02476 USA
[5] Utah State Univ, Civil & Environm Engn, Logan, UT 84322 USA
基金
美国国家科学基金会;
关键词
packaged workflows; water data; reproducibility; open science; open data; open source; R; !text type='Python']Python[!/text; Julia; Jupyter; USGS; JUPYTER;
D O I
10.3390/w15244236
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Much of modern science takes place in a computational environment, and, increasingly, that environment is programmed using R, Python, or Julia. Furthermore, most scientific data now live on the cloud, so the first step in many workflows is to query a cloud database and load the response into a computational environment for further analysis. Thus, tools that facilitate programmatic data retrieval represent a critical component in reproducible scientific workflows. Earth science is no different in this regard. To fulfill that basic need, we developed R, Python, and Julia packages providing programmatic access to the U.S. Geological Survey's National Water Information System database and the multi-agency Water Quality Portal. Together, these packages create a common interface for retrieving hydrologic data in the Jupyter ecosystem, which is widely used in water research, operations, and teaching. Source code, documentation, and tutorials for the packages are available on GitHub. Users can go there to learn, raise issues, or contribute improvements within a single platform, which helps foster better engagement and collaboration between data providers and their users.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] An Introduction to R and Python']Python for Data Analysis: A Side-by-Side Approach
    Fischer, Daniel
    Chapman, R. Brown
    INTERNATIONAL STATISTICAL REVIEW, 2024, 92 (01) : 132 - 134
  • [22] Comparing programming languages for data analytics: Accuracy of estimation in Python']Python and R
    Hill, Chelsey
    Du, Lanqing
    Johnson, Marina
    Mccullough, B. D.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 14 (03)
  • [23] Efficient Multiple Imputation for Diverse Data in Python']Python and R: MIDASpy and rMIDAS
    Lall, Ranjit
    Robinson, Thomas
    JOURNAL OF STATISTICAL SOFTWARE, 2023, 107 (09): : 1 - 38
  • [24] An Introduction to R and Python']Python for Data Analysis: A Side-By-Side Approach
    Shalabh
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2024, 187 (04) : 1139 - 1139
  • [25] An Introduction to R and Python']Python for Data Analysis: A Side-by-Side Approach
    Wallin, Gabriel
    AMERICAN STATISTICIAN, 2024, 78 (02): : 265 - 265
  • [27] cwepr - A Python']Python package for analysing cw-EPR data focussing on reproducibility and simple usage
    Schroeder, Mirjam
    Biskup, Till
    JOURNAL OF MAGNETIC RESONANCE, 2022, 335
  • [28] SLEEP: A PYTHON']PYTHON OPEN-SOURCE SOFTWARE FOR VISUALIZING AND SCORING SLEEP DATA
    Vallat, R.
    Combrisson, E.
    Eichenlaub, J. -B.
    O'Reilly, C.
    Lajnef, T.
    Guillot, A.
    Ruby, P.
    Jerbi, K.
    SLEEP MEDICINE, 2017, 40 : E333 - E333
  • [29] LDAQ: An Open-Source Python']Python Package for Data Acquisition and Signal Generation
    Kosir, Tilen
    Zaletelj, Klemen
    Slavic, Janko
    SPECIAL TOPICS IN STRUCTURAL DYNAMICS & EXPERIMENTAL TECHNIQUES, VOL 5, 2024, : 109 - 111
  • [30] pyActigraphy: Open-source python']python package for actigraphy data visualization and analysis
    Hammad, Gregory
    Reyt, Mathilde
    Beliy, Nikita
    Baillet, Marion
    Deantoni, Michele
    Lesoinne, Alexia
    Muto, Vincenzo
    Schmidt, Christina
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (10)