A Graphical Model for Fusing Diverse Microbiome Data

被引:1
|
作者
Aktukmak, Mehmet [1 ]
Zhu, Haonan [1 ]
Chevrette, Marc G. [2 ,3 ]
Nepper, Julia [3 ]
Magesh, Shruthi [3 ,4 ]
Handelsman, Jo [2 ,3 ]
Hero, Alfred [1 ]
机构
[1] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
[2] Univ Wisconsin, Dept Plant Pathol, Madison, WI 53706 USA
[3] Wisconsin Inst Discovery, Madison, WI 53715 USA
[4] Univ Wisconsin, Microbiol Doctoral Training Program, Madison, WI 53706 USA
关键词
Bayesian probabilistic graphical model; data fusion; microbial data analysis; variational optimization; VARIATIONAL INFERENCE; UNDERSTAND; LASSO;
D O I
10.1109/TSP.2023.3309464
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops a Bayesian graphical model for fusing disparate types of count data. The motivating application is the study of bacterial communities from diverse high-dimensional features, in this case, transcripts, collected from different treatments. In such datasets, there are no explicit correspondences between the communities and each corresponds to different factors, making data fusion challenging. We introduce a flexible multinomial-Gaussian generative model for jointly modeling such count data. This latent variable model jointly characterizes the observed data through a common multivariate Gaussian latent space that parameterizes the set of multinomial probabilities of the transcriptome counts. The covariance matrix of the latent variables induces a covariance matrix of co-dependencies between all the transcripts, effectively fusing multiple data sources. We present a computationally scalable variational Expectation-Maximization (EM) algorithm for inferring the latent variables and the parameters of the model. The inferred latent variables provide a common dimensionality reduction for visualizing the data and the inferred parameters provide a predictive posterior distribution. In addition to simulation studies that demonstrate the variational EM procedure, we apply our model to a bacterial microbiome dataset.
引用
收藏
页码:3399 / 3412
页数:14
相关论文
共 50 条
  • [41] An arterial speed estimation model fusing data from stationary and mobile sensors
    Cheu, RL
    Lee, DH
    Xie, C
    2001 IEEE INTELLIGENT TRANSPORTATION SYSTEMS - PROCEEDINGS, 2001, : 573 - 578
  • [42] Fusing Mobile Phone and Travel Survey Data to Model Urban Activity Dynamics
    Yang, Chao
    Zhang, Yuliang
    Zhan, Xianyuan
    Ukkusuri, Satish V.
    Chen, Yifan
    JOURNAL OF ADVANCED TRANSPORTATION, 2020, 2020
  • [43] BRScS: a hybrid recommendation model fusing multi-source heterogeneous data
    Ji, Zhenyan
    Yang, Chun
    Wang, Huihui
    Enrique Armendariz-inigo, Jose
    Arce-Urriza, Marta
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)
  • [44] Research on Fusing Multisatellite Soil Moisture Data Based on Bayesian Model Averaging
    Wang, Shan
    Wang, Yuexing
    Zhang, Chi
    Shuai, Han
    Shi, Chun-Xiang
    ADVANCES IN METEOROLOGY, 2018, 2018
  • [45] Effects of data transformation and model selection on feature importance in microbiome classification data
    Karwowska, Zuzanna
    Aasmets, Oliver
    Metspalu, Mait
    Metspalu, Andres
    Milani, Lili
    Esko, Tonu
    Kosciolek, Tomasz
    Org, Elin
    MICROBIOME, 2025, 13 (01):
  • [46] GRAPHICAL DATA VISUALIZATION
    WILLIAMS, MG
    VARHOL, PD
    DR DOBBS JOURNAL, 1991, 16 (12): : 88 - &
  • [47] An Adaptive Trust Prediction Framework for Diverse Data Model
    Yang, Lin
    Luo, Tiejian
    HUMAN CENTERED COMPUTING, HCC 2014, 2015, 8944 : 206 - 215
  • [48] Delivering diverse data to multiple audiences: the PharmGKB model
    Altman, RB
    SCIENTIST, 2006, 20 (04): : 49 - 50
  • [49] Graphical data presentation
    Stengel, Dirk
    Calori, Georgio M.
    Giannoudis, Peter V.
    INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2008, 39 (06): : 659 - 665
  • [50] GRAPHICAL DATA DISPLAY
    OUCHI, GI
    LC GC-MAGAZINE OF SEPARATION SCIENCE, 1992, 10 (02): : 106 - &