A Graphical Model for Fusing Diverse Microbiome Data

被引:1
|
作者
Aktukmak, Mehmet [1 ]
Zhu, Haonan [1 ]
Chevrette, Marc G. [2 ,3 ]
Nepper, Julia [3 ]
Magesh, Shruthi [3 ,4 ]
Handelsman, Jo [2 ,3 ]
Hero, Alfred [1 ]
机构
[1] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
[2] Univ Wisconsin, Dept Plant Pathol, Madison, WI 53706 USA
[3] Wisconsin Inst Discovery, Madison, WI 53715 USA
[4] Univ Wisconsin, Microbiol Doctoral Training Program, Madison, WI 53706 USA
关键词
Bayesian probabilistic graphical model; data fusion; microbial data analysis; variational optimization; VARIATIONAL INFERENCE; UNDERSTAND; LASSO;
D O I
10.1109/TSP.2023.3309464
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops a Bayesian graphical model for fusing disparate types of count data. The motivating application is the study of bacterial communities from diverse high-dimensional features, in this case, transcripts, collected from different treatments. In such datasets, there are no explicit correspondences between the communities and each corresponds to different factors, making data fusion challenging. We introduce a flexible multinomial-Gaussian generative model for jointly modeling such count data. This latent variable model jointly characterizes the observed data through a common multivariate Gaussian latent space that parameterizes the set of multinomial probabilities of the transcriptome counts. The covariance matrix of the latent variables induces a covariance matrix of co-dependencies between all the transcripts, effectively fusing multiple data sources. We present a computationally scalable variational Expectation-Maximization (EM) algorithm for inferring the latent variables and the parameters of the model. The inferred latent variables provide a common dimensionality reduction for visualizing the data and the inferred parameters provide a predictive posterior distribution. In addition to simulation studies that demonstrate the variational EM procedure, we apply our model to a bacterial microbiome dataset.
引用
收藏
页码:3399 / 3412
页数:14
相关论文
共 50 条
  • [21] Fusing Data with Correlations
    Pochampally, Ravali
    Das Sarma, Anish
    Dong, Xin Luna
    Meliou, Alexandra
    Srivastava, Divesh
    SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2014, : 433 - 444
  • [22] A Bayesian Graphical Model for Integrative Analysis of TCGA Data
    Xu, Yanxun
    Zhang, Jie
    Yuan, Yuan
    Mitra, Riten
    Mueller, Peter
    Ji, Yuan
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 135 - 138
  • [23] Assisted graphical model for gene expression data analysis
    Fan, Xinyan
    Fang, Kuangnan
    Ma, Shuangge
    Wang, Shuaichao
    Zhang, Qingzhao
    STATISTICS IN MEDICINE, 2019, 38 (13) : 2364 - 2380
  • [24] MODEL FREE ESTIMATION OF GRAPHICAL MODEL USING GENE EXPRESSION DATA
    Yang, Jenny
    Liu, Yang
    Liu, Yufeng
    Sun, Wei
    ANNALS OF APPLIED STATISTICS, 2021, 15 (01): : 194 - 207
  • [25] Fusing diverse monitoring algorithms for robust change detection
    Goebel, Kai F.
    Hu, Xiao
    Eklund, Neil H. W.
    Yan, Weizhong
    MULTISENSOR, MULTISOURCE INFORMATIN FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS 2006, 2006, 6242
  • [26] ON 3D MODEL CONSTRUCTION BY FUSING HETEROGENEOUS SENSOR DATA
    WANG, YF
    WANG, JF
    CVGIP-IMAGE UNDERSTANDING, 1994, 60 (02): : 210 - 229
  • [27] Information enhanced model selection for Gaussian graphical model with application to metabolomic data
    Zhou, Jie
    Hoen, Anne G.
    Mcritchie, Susan
    Pathmasiri, Wimal
    Viles, Weston D.
    Nguyen, Quang P.
    Madan, Juliette C.
    Dade, Erika
    Karagas, Margaret R.
    Gui, Jiang
    BIOSTATISTICS, 2021, : 926 - 948
  • [28] Penalized estimation of the Gaussian graphical model from data with replicates
    van Wieringen, Wessel N.
    Chen, Yao
    STATISTICS IN MEDICINE, 2021, 40 (19) : 4279 - 4293
  • [29] A Logical and Graphical Operation of a Graph-based Data Model
    Hochin, Teruhisa
    Nomiya, Hiroki
    PROCEEDINGS OF THE 8TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE, 2009, : 1079 - 1084
  • [30] Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data
    Robertson, Charles E.
    Harris, J. Kirk
    Wagner, Brandie D.
    Granger, David
    Browne, Kathy
    Tatem, Beth
    Feazel, Leah M.
    Park, Kristin
    Pace, Norman R.
    Frank, Daniel N.
    BIOINFORMATICS, 2013, 29 (23) : 3100 - 3101