On recovery of an unbounded bi-periodic interface for the inverse fluid-solid interaction scattering problem

被引:0
|
作者
Cui, Yanli [1 ]
Qu, Fenglong [1 ]
Wei, Changkun [2 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[2] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
来源
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Inverse scattering; bi-periodic interface; uniqueness; fluid-solid interaction; FINITE-ELEMENT-METHOD; FACTORIZATION METHOD; UNIQUENESS;
D O I
10.1515/jiip-2021-0070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the inverse scattering of acoustic waves by an unbounded periodic elastic medium in the three-dimensional case. A novel uniqueness theorem is proved for the inverse problem of recovering a bi-periodic interface between acoustic and elastic waves using the near-field data measured only from the acoustic side of the interface, corresponding to a countably infinite number of quasi-periodic incident acoustic waves. The proposed method depends only on a fundamental a priori estimate established for the acoustic and elastic wave fields and a new mixed-reciprocity relation established in this paper for the solutions of the fluid-solid interaction scattering problem.
引用
收藏
页码:431 / 440
页数:10
相关论文
共 50 条
  • [31] A reflection/transmission matrix formulation for seismoacoustic scattering by an irregular fluid-solid interface
    Okamoto, T
    Takenaka, H
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 1999, 139 (02) : 531 - 546
  • [32] Local null controllability of a fluid-solid interaction problem in dimension 3
    Boulakia, M.
    Guerrero, S.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) : 825 - 856
  • [33] Study on Fluid-solid Coupling Problem with Discrete Solid Interaction Based on MPS Method
    Xiao X.
    Cai Q.
    Chen R.
    Ding W.
    Zhang K.
    Guo K.
    Tian W.
    Qiu S.
    Su G.
    [J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2022, 56 (06): : 1104 - 1111
  • [34] Analysis and finite element methods for a fluid-solid interaction problem in one dimension
    Makridakis, C
    Ihlenburg, F
    Babuska, I
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (08): : 1119 - 1141
  • [35] Characterization of partial derivatives with respect to material parameters in a fluid-solid interaction problem
    Azpiroz, Izar
    Barucq, Helene
    Djellouli, Rabia
    Ha Pham
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (02) : 903 - 927
  • [36] A new coupling strategy for fluid-solid interaction problems by using the interface element method
    Kim, Hyun-Gyu
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (04) : 403 - 428
  • [37] An efficient approach for simulating seismoacoustic scattering due to an irregular fluid-solid interface in multilayered media
    Qian, Zheng-Hua
    Yamanaka, Hiroaki
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 189 (01) : 524 - 540
  • [38] Linear Sampling and Reciprocity Gap Methods for a Fluid-Solid Interaction Problem in the Near Field
    Monk, Peter
    Selgas, Virginia
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [39] Analysis of finite element methods and domain decomposition algorithms for a fluid-solid interaction problem
    Feng, XB
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (04) : 1312 - 1336
  • [40] BOUNDARY INTEGRAL EQUATION METHODS FOR THE TWO-DIMENSIONAL FLUID-SOLID INTERACTION PROBLEM
    Yin, Tao
    Hsiao, George C.
    Xu, Liwei
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (05) : 2361 - 2393