A reiterated homogenization problem for the p-Laplacian equation in corrugated thin domains

被引:0
|
作者
Nakasato, Jean Carlos [1 ,2 ]
Pereira, Marcone Correa [1 ]
机构
[1] Univ Sao Paulo, Dept Matemat, Inst Matemat & Estat, Sao Paulo, Brazil
[2] Univ Hokkaido, Fac Sci, Dept Math, Sapporo, Japan
基金
巴西圣保罗研究基金会;
关键词
ASYMPTOTIC ANALYSIS; BOUNDARY;
D O I
10.1016/j.jde.2024.02.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the asymptotic behavior of the solutions of the p -Laplacian equation with mixed homogeneous Neumann-Dirichlet boundary conditions. It is posed in a two-dimensional rough thin domain with two different composites periodically distributed. Each composite has its own periodicity and roughness order. Here, we obtain distinct homogenized limit equations which will depend on the relationship among the roughness and thickness orders of each one. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:165 / 208
页数:44
相关论文
共 50 条
  • [31] Existence and multiplicity for a resonance problem for the p-Laplacian on bounded domains in RN
    Lopez Garza, Gabriel
    Rumbos, Adolfo J.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) : 1193 - 1208
  • [32] Quadrature Domains and p-Laplacian Growth
    John R. King
    Scott W. McCue
    [J]. Complex Analysis and Operator Theory, 2009, 3 : 453 - 469
  • [33] The Brezis-Nirenberg Problem for the Fractional p-Laplacian in Unbounded Domains
    Shen, Yan Sheng
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (11) : 2181 - 2206
  • [34] Quadrature Domains and p-Laplacian Growth
    King, John R.
    McCue, Scott W.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2009, 3 (02) : 453 - 469
  • [35] Homogenization of variational inequalities of Signorini type for the p-Laplacian in perforated domains when p ∈ (1, 2)
    J. I. Díaz
    D. Gómez-Castro
    A. V. Podolskiy
    T. A. Shaposhnikova
    [J]. Doklady Mathematics, 2017, 95 : 151 - 156
  • [36] INVERSE NODAL PROBLEM FOR p-LAPLACIAN STRING EQUATION WITH PRUFER SUBSTITUTION
    Yilmaz, Emrah
    Gulsen, Tuba
    Koyunbakan, Hikmet
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2022, 75 (09): : 1262 - 1270
  • [37] Solvability of Neumann boundary value problem for fractional p-Laplacian equation
    Bo Zhang
    [J]. Advances in Difference Equations, 2015
  • [38] Cauchy problem of a nonlocal p-Laplacian evolution equation with nonlocal convection
    Sun, Jiebao
    Li, Jing
    Liu, Qiang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 691 - 702
  • [39] On the cauchy problem of evolution p-Laplacian equation with nonlinear gradient term
    Mingyu Chen
    Junning Zhao
    [J]. Chinese Annals of Mathematics, Series B, 2009, 30 : 1 - 16
  • [40] The p-Laplacian equation in a rough thin domain with terms concentrating on the boundary
    Nogueira, Ariadne
    Nakasato, Jean Carlos
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (05) : 1789 - 1813