Quadrature Domains and p-Laplacian Growth

被引:0
|
作者
John R. King
Scott W. McCue
机构
[1] University of Nottingham,School of Mathematical Sciences
[2] Queensland University of Technology,School of Mathematical Sciences
来源
关键词
Primary 35R35; Secondary 35B40, 76D27; Quadrature domains; -Laplacian; Hele–Shaw flow; Baiocchi transform; moving boundary problem; formal asymptotics;
D O I
暂无
中图分类号
学科分类号
摘要
The classical Hele–Shaw (Laplacian-growth) problem is generalised to power-law fluids (satisfying the p-Laplace equation) and a number of results are established that are analogous to some of those involving null-quadrature domains in the former. The results are formal, but suggest a number of avenues warranting rigorous investigation; some of these are formulated as conjectures or open problems.
引用
收藏
页码:453 / 469
页数:16
相关论文
共 50 条
  • [1] Quadrature Domains and p-Laplacian Growth
    King, John R.
    McCue, Scott W.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2009, 3 (02) : 453 - 469
  • [2] Behavior of the p-Laplacian on Thin Domains
    Silva, Ricardo P.
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 2013
  • [3] Remarks on the p-Laplacian on thin domains
    Pereira, Marcone C.
    Silva, Ricardo P.
    [J]. CONTRIBUTIONS TO NONLINEAR ELLIPTIC EQUATIONS AND SYSTEMS, 2015, 86 : 389 - 403
  • [4] The Fredholm alternative for the p-Laplacian in exterior domains
    Drabek, Pavel
    Ho, Ky
    Sarkar, Abhishek
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 174 : 17 - 53
  • [5] Equations of p-Laplacian type in unbounded domains
    De Nápoli, PL
    Mariani, MC
    [J]. ADVANCED NONLINEAR STUDIES, 2002, 2 (03) : 237 - 250
  • [6] EIGENVALUES OF THE FINSLER p-LAPLACIAN ON VARYING DOMAINS
    di Blasio, Giuseppina
    Lamberti, Pier Domenico
    [J]. MATHEMATIKA, 2020, 66 (03) : 765 - 776
  • [7] The p-Laplacian in domains with small random holes.
    Balzano, M
    Durante, T
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (02): : 435 - 458
  • [8] Monotonicity results for the fractional p-Laplacian in unbounded domains
    Wu, Leyun
    Yu, Mei
    Zhang, Binlin
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2021, 11 (02)
  • [9] NONLINEAR P-LAPLACIAN PROBLEMS ON UNBOUNDED-DOMAINS
    YU, LS
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (04) : 1037 - 1045
  • [10] Principal frequency of the p-Laplacian and the inradius of Euclidean domains
    Poliquin, Guillaume
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2015, 7 (03) : 505 - 511