A reiterated homogenization problem for the p-Laplacian equation in corrugated thin domains

被引:0
|
作者
Nakasato, Jean Carlos [1 ,2 ]
Pereira, Marcone Correa [1 ]
机构
[1] Univ Sao Paulo, Dept Matemat, Inst Matemat & Estat, Sao Paulo, Brazil
[2] Univ Hokkaido, Fac Sci, Dept Math, Sapporo, Japan
基金
巴西圣保罗研究基金会;
关键词
ASYMPTOTIC ANALYSIS; BOUNDARY;
D O I
10.1016/j.jde.2024.02.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the asymptotic behavior of the solutions of the p -Laplacian equation with mixed homogeneous Neumann-Dirichlet boundary conditions. It is posed in a two-dimensional rough thin domain with two different composites periodically distributed. Each composite has its own periodicity and roughness order. Here, we obtain distinct homogenized limit equations which will depend on the relationship among the roughness and thickness orders of each one. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:165 / 208
页数:44
相关论文
共 50 条
  • [1] The p-Laplacian equation in thin domains: The unfolding approach
    Arrieta, Jose M.
    Carlos Nakasato, Jean
    Correa Pereira, Marcone
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 : 1 - 34
  • [2] Application of Uniform Distribution to Homogenization of a Thin Obstacle Problem with p-Laplacian
    Karakhanyan, Aram L.
    Stromqvist, Martin H.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (10) : 1870 - 1897
  • [3] Behavior of the p-Laplacian on Thin Domains
    Silva, Ricardo P.
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 2013
  • [4] Remarks on the p-Laplacian on thin domains
    Pereira, Marcone C.
    Silva, Ricardo P.
    [J]. CONTRIBUTIONS TO NONLINEAR ELLIPTIC EQUATIONS AND SYSTEMS, 2015, 86 : 389 - 403
  • [5] Limiting dynamics for stochastic delay p-Laplacian equation on unbounded thin domains
    Li, Fuzhi
    Li, Dingshi
    Freitas, Mirelson M.
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)
  • [6] Limiting dynamics for stochastic delay p-Laplacian equation on unbounded thin domains
    Fuzhi Li
    Dingshi Li
    Mirelson M. Freitas
    [J]. Banach Journal of Mathematical Analysis, 2024, 18
  • [7] A CLASSICAL APPROACH FOR THE p-LAPLACIAN IN OSCILLATING THIN DOMAINS
    Nakasato, Jean Carlos
    Pereira, Marcone Correa
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 58 (01) : 209 - 231
  • [8] Gradient estimates for p-Laplacian equation in composite Reifenberg domains
    Zhang, Chao
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 133 : 134 - 143
  • [9] The Robin problem for singular p-Laplacian equation in a cone
    Borsuk, Mikhail
    Jankowski, Sebastian
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (03) : 333 - 345
  • [10] Homogenization of p-Laplacian in perforated domain
    Amaziane, B.
    Antontsev, S.
    Pankratov, L.
    Piatnitski, A.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2457 - 2479