On The Closures of Monotone Algebraic Classes and Variants of the Determinant

被引:0
|
作者
Chaugule, Prasad [1 ]
Limaye, Nutan [2 ]
机构
[1] IIT Delhi, Dept Comp Sci & Engn, New Delhi, India
[2] ITU Copenhagen, Comp Sci Dept, Copenhagen, Denmark
关键词
Monotone algebraic classes; Determinant polynomial; Algebraic complexity classes; Closures of algebraic classes;
D O I
10.1007/s00453-024-01221-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we prove the following two results.We show that for any C is an element of{mVF,mVP,mVNP}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \in \{\textsf {mVF}, \textsf {mVP}, \textsf {mVNP}\}$$\end{document}, C=C over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C = \overline{C}$$\end{document}. Here, mVF,mVP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mVF}, \textsf {mVP}$$\end{document}, and mVNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mVNP}$$\end{document} are monotone variants of VF,VP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VF}, \textsf {VP}$$\end{document}, and VNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VNP}$$\end{document}, respectively. For an algebraic complexity class , C over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C}$$\end{document} denotes the closure of . For mVBP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mVBP}$$\end{document} a similar result was shown in Blaser et al. (in: 35th Computational Complexity Conference, CCC 2020. LIPIcs, vol 169, pp 21-12124, 2020. https://doi.org/10.4230/LIPIcs.CCC.2020.21). Here we extend their result by adapting their proof.We define polynomial families {P(k)n}n >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal {P}(k)_n\}_{n \ge 0}$$\end{document}, such that {P(0)n}n >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal {P}(0)_n\}_{n \ge 0}$$\end{document} equals the determinant polynomial. We show that {P(k)n}n >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal {P}(k)_n\}_{n \ge 0}$$\end{document} is VBP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VBP}$$\end{document} complete for k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document} and it becomes VNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VNP}$$\end{document} complete when k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. In particular, {P(k)n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal {P}(k)_n\}$$\end{document} is Detn not equal k(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {Det<^>{\ne k}_n(X)}$$\end{document}, a polynomial obtained by summing over all signed cycle covers that avoid length cycles. We show that Detn not equal 1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {Det<^>{\ne 1}_n(X)}$$\end{document} is complete for VBP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VBP}$$\end{document} and Detn not equal k(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {Det<^>{\ne k}_n(X)}$$\end{document} is complete for VNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VNP}$$\end{document} for all k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document} over any field F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}$$\end{document}.
引用
收藏
页码:2130 / 2151
页数:22
相关论文
共 50 条
  • [1] Metrics of algebraic closures in pattern recognition problems with two nonoverlapping classes
    A. G. D’yakonov
    Computational Mathematics and Mathematical Physics, 2008, 48 : 866 - 876
  • [2] Metrics of Algebraic Closures in Pattern Recognition Problems with Two Nonoverlapping Classes
    D'yakonov, A. G.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (05) : 866 - 876
  • [3] On the Monotone Polar and Representable Closures of Monotone Operators
    Bueno, Orestes
    Enrique Martinez-Legaz, Juan
    Svaiter, Benar F.
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (02) : 495 - 505
  • [4] Variants of Homomorphism Polynomials Complete for Algebraic Complexity Classes
    Chaugule, Prasad
    Limaye, Nutan
    Varre, Aditya
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2021, 13 (04)
  • [5] Variants of Homomorphism Polynomials Complete for Algebraic Complexity Classes
    Chaugule, Prasad
    Limaye, Nutan
    Varre, Aditya
    COMPUTING AND COMBINATORICS, COCOON 2019, 2019, 11653 : 90 - 102
  • [6] MONOTONE CLOSURES IN OPERATOR ALGEBRAS
    PEDERSEN, GK
    AMERICAN JOURNAL OF MATHEMATICS, 1973, 94 (04) : 955 - 962
  • [7] CLOSURES OF PROPER CLASSES
    Alizade, Rafail
    Demirci, Yilmaz Mehmet
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 723 - 738
  • [8] Existence and Uniqueness of Algebraic Closures
    Schwarzweller, Christoph
    FORMALIZED MATHEMATICS, 2022, 30 (04): : 281 - 294
  • [9] CLOSURES OF UNITARY EQUIVALENCE CLASSES
    HADWIN, DW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A193 - A194
  • [10] On monotone classes and duality
    Rattihalli, RN
    Rao, AR
    AMERICAN JOURNAL OF MATHEMATICAL AND MANAGEMENT SCIENCES, VOL 22, NOS 1&2, 2002, 22 (1-2): : 77 - 88