The blow-up solutions for fractional heat equations on torus and Euclidean space

被引:0
|
作者
Bhimani, Divyang G. [1 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Math, Dr Homi Bhabha Rd, Pune 411008, India
关键词
Fractional heat equations; Blow-up solution; Modulation spaces; Fourier amalgam spaces; MODULATION SPACES; CAUCHY-PROBLEM;
D O I
10.1007/s00030-022-00828-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We produce a finite time blow-up solution for nonlinear fractional heat equation (partial derivative(t)u + (-Delta)(beta /2) u= u(k)) in modulation and Fourier amalgam spaces on the torus T-d and the Euclidean space R-d. This complements several known local and small data global well-posedness results in modulation spaces on R-d. Our method of proof rely on the formal solution of the equation. This method should be further applied to other non-linear evolution equations.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The blow-up solutions for fractional heat equations on torus and Euclidean space
    Divyang G. Bhimani
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2023, 30
  • [2] Existence and blow-up of solutions to the fractional stochastic heat equations
    Bezdek, Pavel
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2018, 6 (01): : 73 - 108
  • [3] Existence and blow-up of solutions to the fractional stochastic heat equations
    Pavel Bezdek
    [J]. Stochastics and Partial Differential Equations: Analysis and Computations, 2018, 6 : 73 - 108
  • [4] Blow-up directions at space infinity for solutions of semilinear heat equations
    Giga, Yoshikazu
    Umeda, Noriaki
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2005, 23 (1-2): : 9 - 28
  • [5] Blow-up solutions of inhornogeneous nonlinear Schrodinger equations on torus
    Pang, PYH
    Tang, HY
    Wang, YD
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (05) : 839 - 855
  • [6] Blow-Up of Solutions to Fractional-in-Space Burgers-Type Equations
    Alotaibi, Munirah
    Jleli, Mohamed
    Samet, Bessem
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [7] A blow-up dichotomy for semilinear fractional heat equations
    Laister, Robert
    Sierzega, Mikolaj
    [J]. MATHEMATISCHE ANNALEN, 2020, 381 (1-2) : 75 - 90
  • [8] BLOW-UP OF SOLUTIONS FOR SEMILINEAR FRACTIONAL SCHRODINGER EQUATIONS
    Fino, A. Z.
    Dannawi, I.
    Kirane, M.
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2018, 30 (01) : 67 - 80
  • [9] A blow-up dichotomy for semilinear fractional heat equations
    Robert Laister
    Mikołaj Sierżęga
    [J]. Mathematische Annalen, 2021, 381 : 75 - 90
  • [10] On blow-up at space infinity for semilinear heat equations
    Giga, Y
    Umeda, N
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (02) : 538 - 555