The blow-up solutions for fractional heat equations on torus and Euclidean space

被引:0
|
作者
Bhimani, Divyang G. [1 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Math, Dr Homi Bhabha Rd, Pune 411008, India
关键词
Fractional heat equations; Blow-up solution; Modulation spaces; Fourier amalgam spaces; MODULATION SPACES; CAUCHY-PROBLEM;
D O I
10.1007/s00030-022-00828-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We produce a finite time blow-up solution for nonlinear fractional heat equation (partial derivative(t)u + (-Delta)(beta /2) u= u(k)) in modulation and Fourier amalgam spaces on the torus T-d and the Euclidean space R-d. This complements several known local and small data global well-posedness results in modulation spaces on R-d. Our method of proof rely on the formal solution of the equation. This method should be further applied to other non-linear evolution equations.
引用
收藏
页数:22
相关论文
共 50 条