Existence and blow-up of solutions to the fractional stochastic heat equations

被引:0
|
作者
Pavel Bezdek
机构
[1] University of Utah,
关键词
The Stochastic heat equation; Explosion; Blow-up;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we will show existence and blow-up of the solution to ∂∂tut(x)=Lut(x)+σ(ut(x))η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial }{\partial t} u_{t}(x) = \mathcal {L} u_{ t}(x) + \sigma (u_{t}(x))\eta $$\end{document} on a circle with space-time white noise η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}. The operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} is taken to be the generator of a Lévy process (superset of fractional derivatives) and σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is a nonlinear function of form σ(x)∝|x|γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (x) \propto |x|^\gamma $$\end{document}, for γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >1$$\end{document}. We will develop a precise condition for existence or blow-up of the solution in terms of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} and the Lévy process corresponding to L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document}.
引用
收藏
页码:73 / 108
页数:35
相关论文
共 50 条
  • [1] Existence and blow-up of solutions to the fractional stochastic heat equations
    Bezdek, Pavel
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2018, 6 (01): : 73 - 108
  • [2] Blow-up solutions of the stochastic nonlocal heat equations
    Wang, Xiaohuan
    [J]. STOCHASTICS AND DYNAMICS, 2019, 19 (02)
  • [3] Global Existence and Blow-up of Solutions for a System of Fractional Wave Equations
    Ahmad, Bashir
    Alsaedi, Ahmed
    Berbiche, Mohamed
    Kirane, Mokhtar
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2022, 26 (01): : 103 - 135
  • [4] EXISTENCE OF GLOBAL SOLUTIONS AND BLOW-UP OF SOLUTIONS FOR COUPLED SYSTEMS OF FRACTIONAL DIFFUSION EQUATIONS
    Ahmad, Bashir
    Alsaedi, Ahmed
    Berbiche, Mohamed
    Kirane, Mokhtar
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [5] The blow-up solutions for fractional heat equations on torus and Euclidean space
    Divyang G. Bhimani
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2023, 30
  • [6] The blow-up solutions for fractional heat equations on torus and Euclidean space
    Bhimani, Divyang G.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (02):
  • [7] EXISTENCE AND BLOW-UP OF SOLUTIONS FOR FRACTIONAL WAVE EQUATIONS OF KIRCHHOFF TYPE WITH VISCOELASTICITY
    Xiang, Mingqi
    Hu, Die
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (12): : 4609 - 4629
  • [8] A blow-up dichotomy for semilinear fractional heat equations
    Laister, Robert
    Sierzega, Mikolaj
    [J]. MATHEMATISCHE ANNALEN, 2020, 381 (1-2) : 75 - 90
  • [9] BLOW-UP OF SOLUTIONS FOR SEMILINEAR FRACTIONAL SCHRODINGER EQUATIONS
    Fino, A. Z.
    Dannawi, I.
    Kirane, M.
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2018, 30 (01) : 67 - 80
  • [10] A blow-up dichotomy for semilinear fractional heat equations
    Robert Laister
    Mikołaj Sierżęga
    [J]. Mathematische Annalen, 2021, 381 : 75 - 90