Static calibration and dynamic compensation of the SCORBOT robot using sensor fusion and LSTM networks

被引:1
|
作者
Kuo, Yong-Lin [1 ,2 ]
Hsieh, Chia-Hang [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Grad Inst Automat & Control, Taipei, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Ctr Automat & Control, Taipei, Taiwan
关键词
Static calibration; dynamic compensation; sensor fusion; LSTM network;
D O I
10.1080/02533839.2023.2261984
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents both static calibration and dynamics compensation to reduce the positioning errors of the SCORBOT robot. First, a sensor fusion scheme is proposed to estimate the position and attitude of the end-effector of a robot instead of using laser trackers or coordinate measuring machines. The scheme integrates an extended Kalman filter (EKF) with the models of an inertial measurement unit (IMU) and a depth camera. Second, a static calibration scheme is presented to reduce the mechanism errors of robots. The scheme modifies the Denavit-Hartenberg (D-H) parameters provided by the manufacturer based on the least squares method. Third, a dynamic compensation scheme is proposed to reduce the errors caused by robot motions. The scheme establishes a long short-term memory (LSTM) network to compensate the joint angles, where the robot dynamics is integrated into the scheme. Finally, both simulations and experiments are performed to validate the proposed schemes.
引用
收藏
页码:881 / 894
页数:14
相关论文
共 50 条
  • [1] Motion Programming of SCORBOT ER-4u Using Fusion of Robot Kinematics and Inertial Sensor
    Jha, Abhishek
    Chiddarwar, Shital S.
    Alakshendra, Veer
    CAD/CAM, ROBOTICS AND FACTORIES OF THE FUTURE, 2016, : 263 - 273
  • [2] Sensor Data Fusion for a Mobile Robot Using Neural Networks
    Barreto-Cubero, Andres J.
    Gomez-Espinosa, Alfonso
    Escobedo Cabello, Jesus Arturo
    Cuan-Urquizo, Enrique
    Cruz-Ramirez, Sergio R.
    SENSORS, 2022, 22 (01)
  • [3] Activity Recognition Using Dynamic Multiple Sensor Fusion in Body Sensor Networks
    Gao, Lei
    Bourke, Alan K.
    Nelson, John
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 1077 - 1080
  • [4] A Bayesian approach to sensor fusion in autonomous sensor and robot networks
    Lima, Pedro U.
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2007, 10 (03) : 22 - 27
  • [5] Static calibration of inertial sensors using an industrial robot
    Janocha, H
    Fox, J
    SENSORS AND MEASURING SYSTEMS 2004, 2004, 1829 : 171 - 178
  • [6] Calibration of the multichannel sensor of a plane angle in dynamic and static modes
    Agapov, MY
    Bournashev, MN
    Loukianov, DP
    Mironov, AV
    Filatov, YV
    SECOND INTERNATIONAL CONFERENCE ON LASERS FOR MEASUREMENT AND INFORMATION TRANSFER, 2002, 4680 : 66 - 71
  • [7] ACCELEROMETER CALIBRATION USING SENSOR FUSION WITH A GYROSCOPE
    Olsson, Fredrik
    Kok, Manon
    Halvorsen, Kjartan
    Schon, Thomas B.
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [8] A Calibration Method for IMU Attatched to a Mobile Robot Using LSTM Network
    Seong S.M.
    Jeong S.
    Journal of Institute of Control, Robotics and Systems, 2023, 29 (06) : 488 - 494
  • [9] Dynamic data fusion for future sensor networks
    Georgia Institute of Technology
    不详
    ACM Trans. Sens. Netw., 2006, 3 (404-443):
  • [10] Dynamic Data Fusion for Future Sensor Networks
    Ramachandran, Umakishore
    Kumar, Rajnish
    Wolenetz, Matthew
    Cooper, Brian
    Agarwalla, Bikash
    Shin, Junsuk
    Hutto, Phillip
    Paul, Arnab
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2006, 2 (03)