Static calibration and dynamic compensation of the SCORBOT robot using sensor fusion and LSTM networks

被引:1
|
作者
Kuo, Yong-Lin [1 ,2 ]
Hsieh, Chia-Hang [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Grad Inst Automat & Control, Taipei, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Ctr Automat & Control, Taipei, Taiwan
关键词
Static calibration; dynamic compensation; sensor fusion; LSTM network;
D O I
10.1080/02533839.2023.2261984
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents both static calibration and dynamics compensation to reduce the positioning errors of the SCORBOT robot. First, a sensor fusion scheme is proposed to estimate the position and attitude of the end-effector of a robot instead of using laser trackers or coordinate measuring machines. The scheme integrates an extended Kalman filter (EKF) with the models of an inertial measurement unit (IMU) and a depth camera. Second, a static calibration scheme is presented to reduce the mechanism errors of robots. The scheme modifies the Denavit-Hartenberg (D-H) parameters provided by the manufacturer based on the least squares method. Third, a dynamic compensation scheme is proposed to reduce the errors caused by robot motions. The scheme establishes a long short-term memory (LSTM) network to compensate the joint angles, where the robot dynamics is integrated into the scheme. Finally, both simulations and experiments are performed to validate the proposed schemes.
引用
收藏
页码:881 / 894
页数:14
相关论文
共 50 条
  • [21] Dynamic Head-on Robot Collision Avoidance Using LSTM
    Jafri, S. M. Haider
    Kala, Rahul
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1173 - 1208
  • [22] Dynamic Head-on Robot Collision Avoidance Using LSTM
    S. M. Haider Jafri
    Rahul Kala
    Neural Processing Letters, 2023, 55 : 1173 - 1208
  • [23] Sensor fusion and calibration for motion captures using accelerometers
    Lee, Jihong
    Ha, Insoo
    Proceedings - IEEE International Conference on Robotics and Automation, 3 : 1954 - 1959
  • [24] Sensor fusion and calibration for motion captures using accelerometers
    Lee, JH
    Ha, I
    ICRA '99: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, PROCEEDINGS, 1999, : 1954 - 1959
  • [25] Sensor fusion and calibration for motion captures using accelerometers
    Chung-nam Natl Univ, Taejon, Korea, Republic of
    Proc IEEE Int Conf Rob Autom, (1954-1959):
  • [26] Inverse robot calibration using artificial neural networks
    Zhong, XL
    Lewis, J
    NNagy, FL
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1996, 9 (01) : 83 - 93
  • [27] Hand-Eye Calibration Technology of Intelligent Picking Robot Using Multiple Photoelectric Sensor Information Fusion
    Chen, Linlin
    Huang, Ju
    Liu, Yonghua
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (08) : 1348 - 1356
  • [28] System-Level Calibration for Data Fusion in Wireless Sensor Networks
    Tan, Rui
    Xing, Guoliang
    Yuan, Zhaohui
    Liu, Xue
    Yao, Jianguo
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2013, 9 (03)
  • [29] Elevator Riding of Mobile Robot Using Sensor Fusion
    Lee, Jaehong
    Cui, Xuenan
    Kim, Hyoungrae
    Lee, Seungjun
    Kim, Hakil
    8TH INTERNATIONAL CONFERENCE ON ROBOTIC, VISION, SIGNAL PROCESSING & POWER APPLICATIONS: INNOVATION EXCELLENCE TOWARDS HUMANISTIC TECHNOLOGY, 2014, 291 : 89 - 98
  • [30] A Dynamic Bayesian Nonparametric Model for Blind Calibration of Sensor Networks
    Yang, Jielong
    Zhong, Xionghu
    Tay, Wee Peng
    IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (05): : 3942 - 3953