Deep-learning-based clustering of OCT images for automated biomarker discovery in age-related macular degeneration

被引:0
|
作者
Holland, Robbie [1 ]
Leingang, Oliver [2 ]
Hagag, Ahmed M. [3 ]
Holmes, Christopher [3 ]
Anders, Philipp [4 ]
Paetzold, Johannes C. C. [1 ]
Kaye, Rebecca [5 ]
Riedl, Sophie [2 ]
Bogunovic, Hrvoje [2 ]
Schmidt-Erfurth, Ursula [2 ]
Scholl, Hendrik P. [4 ,6 ]
Rueckert, Daniel [1 ,7 ]
Lotery, Andrew J. [5 ]
Sivaprasad, Sobha [3 ]
Menten, Martin Joseph [1 ,7 ]
机构
[1] Imperial Coll London, Comp, London, England
[2] Med Univ Wien, Vienna, Austria
[3] Moorfields Eye Hosp NHS Fdn Trust, London, England
[4] Inst Mol & Clin Ophthalmol Basel, Basel, Switzerland
[5] Univ Southampton, Clin Expt Sci, Ophthalmol, Southampton, Hants, England
[6] Univ Basel, Dept Ophthalmol, Basel, Switzerland
[7] Tech Univ Munich, Informat, Munich, Germany
基金
英国惠康基金;
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Performance of an Automated, Deep Learning-Based Tool to Screen for Age-Related Macular Degeneration (AMD)
    Parthasarathy, Divya Rao
    Toh, Jun Kai
    Savoy, Florian
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [22] Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging
    Bogunovic, Hrvoje
    Montuoro, Alessio
    Baratsits, Magdalena
    Karantonis, Maria G.
    Waldstein, Sebastian M.
    Schlanitz, Ferdinand
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (06) : BIO141 - BIO150
  • [23] Detection of Wet Age-related Macular Degeneration in OCT Images: A Case Study
    Haq, Anam
    Wilk, Szymon
    INNOVATIONS IN BIOMEDICAL ENGINEERING, 2018, 623 : 43 - 51
  • [24] Classification and segmentation of OCT images for age-related macular degeneration based on dual guidance networks
    Diao, Shengyong
    Su, Jinzhu
    Yang, Changqing
    Zhu, Weifang
    Xiang, Dehui
    Chen, Xinjian
    Peng, Qing
    Shi, Fei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [25] The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment
    Tae Keun Yoo
    Joon Yul Choi
    Jeong Gi Seo
    Bhoopalan Ramasubramanian
    Sundaramoorthy Selvaperumal
    Deok Won Kim
    Medical & Biological Engineering & Computing, 2019, 57 : 677 - 687
  • [26] The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment
    Yoo, Tae Keun
    Choi, Joon Yul
    Seo, Jeong Gi
    Ramasubramanian, Bhoopalan
    Selvaperumal, Sundaramoorthy
    Kim, Deok Won
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (03) : 677 - 687
  • [27] ALGORITHM OF SEGMENTATION OF OCT MACULAR IMAGES TO ANALYZE THE RESULTS IN PATIENTS WITH AGE-RELATED MACULAR DEGENERATION
    Ibragimova, R. R.
    Gilmanov, II
    Lopukhova, E. A.
    Lakman, I. A.
    Bilyalov, A. R.
    Mukhamadeev, T. R.
    Kutluyarov, R., V
    Idrisova, G. M.
    BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY, 2022, (06): : 85 - 91
  • [28] DETECTION OF AGE-RELATED MACULAR DEGENERATION VIA DEEP LEARNING
    Burlina, P.
    Freund, D. E.
    Joshi, N.
    Wolfson, Y.
    Bressler, N. M.
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 184 - 188
  • [29] Deep Learning for Automated Screening and Semantic Segmentation of Age-related and Juvenile Atrophic Macular Degeneration
    Wang, Ziyuan
    Sadda, SriniVas R.
    Hu, Zhihong
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [30] Combination of infrared reflectance and OCT imaging for age-related macular degeneration screening via deep learning
    Salgado, Felipe
    Cuitino, Loreto
    Vairetti, Carla
    Vega-Tapia, Fabian
    Valdivieso, Sofia
    Maldonado, Sebastian
    Rojas, Felipe
    Olate-Perez, Alvaro
    Valenzuela, Rodrigo A.
    Urzua, Cristhian A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)