DETECTION OF AGE-RELATED MACULAR DEGENERATION VIA DEEP LEARNING

被引:49
|
作者
Burlina, P. [1 ,2 ,3 ]
Freund, D. E. [1 ]
Joshi, N. [1 ]
Wolfson, Y. [3 ]
Bressler, N. M. [3 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Wilmer Eye Inst, Sch Med, Baltimore, MD 21218 USA
关键词
Age-related macular degeneration; deep learning; pre-trained networks; SUBGROUP ANALYSIS; RANIBIZUMAB; VERTEPORFIN;
D O I
10.1109/ISBI.2016.7493240
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Age-related macular generation (AMD) - when left untreated - is the main cause of blindness for individuals over the age of 50. With the US population now counting over 100 million individuals over 50, it is imperative to develop methods that can effectively determine which individuals with an earlier, often asymptomatic stage, are at risk of developing the advanced stage that can cause severe vision loss. This paper studies the appropriateness of the transfer of image features computed from pre-trained deep neural networks to the problem in AMD detection. Tests using over 5600 images from the NIH AREDS dataset (the largest dataset used thus far for AMD image analysis studies) show good preliminary results (between nearly 92% and 95% accuracy).
引用
收藏
页码:184 / 188
页数:5
相关论文
共 50 条
  • [1] Deep Learning in Neovascular Age-Related Macular Degeneration
    Borrelli, Enrico
    Serafino, Sonia
    Ricardi, Federico
    Coletto, Andrea
    Neri, Giovanni
    Olivieri, Chiara
    Ulla, Lorena
    Foti, Claudio
    Marolo, Paola
    Toro, Mario Damiano
    Bandello, Francesco
    Reibaldi, Michele
    MEDICINA-LITHUANIA, 2024, 60 (06):
  • [2] Automated Age-Related Macular Degeneration and Diabetic Macular Edema Detection on OCT Images using Deep Learning
    Kaymak, Sertan
    Serener, Ali
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2018, : 265 - 269
  • [3] Automatic Diagnosis of Age-Related Macular Degeneration via Federated Learning
    Sonti, Movya
    Kokil, Priyanka
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT II, 2024, 2010 : 128 - 136
  • [4] Multitask Learning for Activity Detection in Neovascular Age-Related Macular Degeneration
    Ayhan, Murat Seckin
    Faber, Hanna
    Kuehlewein, Laura
    Inhoffen, Werner
    Aliyeva, Gulnar
    Ziemssen, Focke
    Berens, Philipp
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2023, 12 (04):
  • [5] Combination of infrared reflectance and OCT imaging for age-related macular degeneration screening via deep learning
    Salgado, Felipe
    Cuitino, Loreto
    Vairetti, Carla
    Vega-Tapia, Fabian
    Valdivieso, Sofia
    Maldonado, Sebastian
    Rojas, Felipe
    Olate-Perez, Alvaro
    Valenzuela, Rodrigo A.
    Urzua, Cristhian A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [6] The Impact of Age-Related Macular Degeneration on Retinal Layers Quantified by Deep Learning
    Tian, Yu
    Rauscher, Franziska G.
    Elze, Tobias
    Luo, Yan
    Shi, Min
    Hashemabad, Saber Kazeminasab
    Eslami, Mohammad
    Wirkner, Kerstin
    Peschel, Thomas
    Loeffler, Markus
    Engel, Christoph
    Kirsten, Toralf
    Wang, Mengyu
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (09)
  • [7] Application of Deep Learning for Diagnosing, Classifying, and Treating Age-Related Macular Degeneration
    Gong, Dan
    Kras, Ashley
    Miller, John B.
    SEMINARS IN OPHTHALMOLOGY, 2021, 36 (04) : 198 - 204
  • [8] Predicting conversion to wet age-related macular degeneration using deep learning
    Yim, Jason
    Chopra, Reena
    Spitz, Terry
    Winkens, Jim
    Obika, Annette
    Kelly, Christopher
    Askham, Harry
    Lukic, Marko
    Huemer, Josef
    Fasler, Katrin
    Moraes, Gabriella
    Meyer, Clemens
    Wilson, Marc
    Dixon, Jonathan
    Hughes, Cian
    Rees, Geraint
    Khaw, Peng T.
    Karthikesalingam, Alan
    King, Dominic
    Hassabis, Demis
    Suleyman, Mustafa
    Back, Trevor
    Ledsam, Joseph R.
    Keane, Pearse A.
    De Fauw, Jeffrey
    NATURE MEDICINE, 2020, 26 (06) : 892 - +
  • [9] Predicting risk of late age-related macular degeneration using deep learning
    Peng, Yifan
    Keenan, Tiarnan D.
    Chen, Qingyu
    Agron, Elvira
    Allot, Alexis
    Wong, Wai T.
    Chew, Emily Y.
    Lu, Zhiyong
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [10] Predicting conversion to wet age-related macular degeneration using deep learning
    Jason Yim
    Reena Chopra
    Terry Spitz
    Jim Winkens
    Annette Obika
    Christopher Kelly
    Harry Askham
    Marko Lukic
    Josef Huemer
    Katrin Fasler
    Gabriella Moraes
    Clemens Meyer
    Marc Wilson
    Jonathan Dixon
    Cian Hughes
    Geraint Rees
    Peng T. Khaw
    Alan Karthikesalingam
    Dominic King
    Demis Hassabis
    Mustafa Suleyman
    Trevor Back
    Joseph R. Ledsam
    Pearse A. Keane
    Jeffrey De Fauw
    Nature Medicine, 2020, 26 : 892 - 899