A data-driven robust EVaR-PC with application to portfolio management

被引:0
|
作者
He, Qingyun [1 ]
Hong, Chuanyang [2 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Business Adm, Chengdu, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Comp & Artificial Intelligence, Chengdu, Peoples R China
来源
PLOS ONE | 2023年 / 18卷 / 06期
关键词
CONVEX APPROXIMATIONS; OPTIMIZATION; PROGRAMS; RISK;
D O I
10.1371/journal.pone.0287093
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the robust chance constrained optimization problem (RCCOP), which is a combination of the distributionally robust optimization (DRO) and the chance constraint (CC). The RCCOP plays an important role in modeling uncertain parameters within a decision-making framework. The chance constraint, which is equivalent to a constraint of Value-at-risk (VaR), is approximated by risk measures such as Entropic Value-at-risk (EVaR) or Conditional Value-at-risk (CVaR) due to its difficulty to be evaluated. An excellent approximation requires both tractability and non-conservativeness. In addition, the DRO assumes that we know partial information about the distribution of uncertain parameters instead of their known true underlying probability distribution. In this article, we develop a novel approximation EVaR- PC based on EVaR for CC. Then, we evaluate the proposed approximation EVaR- PC using a discrepancy-based ambiguity set with the wasserstein distance. From a theoretical perspective, the EVaR- PC is less conservative than EVaR and the wasserstein distance possesses many good theoretical properties; from a practical perspective, the discrepancy-based ambiguity set can make full use of the data to estimate the nominal distribution and reduce the sensitivity of decisions to priori knowledges. To show the advantages of our method, we show its application in portfolio management in detail and give the relevant experimental results.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Robust Data-Driven Fault Detection: An Application to Aircraft Air Data Sensors
    Zhao, Yunmei
    Zhao, Hang
    Ai, Jianliang
    Dong, Yiqun
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2022, 2022
  • [12] Data-driven portfolio management for motion pictures industry: A new data-driven optimization methodology using a large language model as the expert
    Alipour-Vaezi, Mohammad
    Tsui, Kwok-Leung
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 197
  • [13] A New Data-Driven Distributionally Robust Portfolio Optimization Method Based on Wasserstein Ambiguity Set
    Du, Ningning
    Liu, Yankui
    Liu, Ying
    IEEE ACCESS, 2021, 9 : 3174 - 3194
  • [14] Data-Driven Distributionally Robust Hierarchical Coordination for Home Energy Management
    Saberi, Hossein
    Zhang, Cuo
    Dong, Zhao Yang
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (05) : 4090 - 4101
  • [15] Data-driven Prediction of EVAR with Confidence in Time-varying Datasets
    Axelrod, Allan
    Carlone, Luca
    Chowdhary, Girish
    Karaman, Sertac
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 5833 - 5838
  • [16] Data-Driven Conditional Robust Optimization
    Chenreddy, Abhilash
    Bandi, Nymisha
    Delage, Erick
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [17] Data-Driven Robust Congestion Pricing
    Wang, Yize
    Paccagnan, Dario
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4437 - 4443
  • [18] Data-driven preventive maintenance for a heterogeneous machine portfolio
    Deprez, Laurens
    Antonio, Katrien
    Arts, Joachim
    Boute, Robert
    OPERATIONS RESEARCH LETTERS, 2023, 51 (02) : 163 - 170
  • [19] A Data-driven project categorization process for portfolio selection
    El Bok, Ghizlane
    Berrado, Abdelaziz
    JOURNAL OF MODELLING IN MANAGEMENT, 2022, 17 (02) : 764 - 787
  • [20] Data-driven optimization in management
    Consigli, Giorgio
    Kleywegt, Anton
    COMPUTATIONAL MANAGEMENT SCIENCE, 2019, 16 (03) : 371 - 374