Berezinskii-Kosterlitz-Thouless transitions in an easy-plane ferromagnetic superfluid

被引:2
|
作者
Underwood, Andrew P. C. [1 ,2 ]
Groszek, Andrew J. [3 ,4 ]
Yu, Xiaoquan [1 ,2 ,5 ]
Blakie, P. B. [1 ,2 ]
Williamson, L. A. [3 ]
机构
[1] Univ Otago, Ctr Quantum Sci, Dept Phys, Dunedin, New Zealand
[2] Univ Otago, Dodd Walls Ctr Photon & Quantum Technol, Dunedin, New Zealand
[3] Univ Queensland, ARC Ctr Excellence Engn Quantum Syst, Sch Math & Phys, St Lucia, Qld 4072, Australia
[4] Univ Queensland, ARC Ctr Excellence Future Low Energy Elect Technol, Sch Math & Phys, St Lucia, Qld 4072, Australia
[5] China Acad Engn Phys, Grad Sch, Beijing 100193, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
LONG-RANGE ORDER; HEISENBERG-ANTIFERROMAGNET; TRIANGULAR LATTICE; PHASE-TRANSITIONS; BOSE; DYNAMICS; VORTEX;
D O I
10.1103/PhysRevResearch.5.L012045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A two-dimensional spin-1 Bose gas exhibits two Berezinskii-Kosterlitz-Thouless (BKT) transitions in the easy-plane ferromagnetic phase. The higher-temperature transition is associated with superfluidity of the mass current determined predominantly by a single spin component. The lower-temperature transition is associated with superfluidity of the axial spin current, quasi-long-range order of the transverse spin density, and binding of polar-core spin vortices (PCVs). Above the spin BKT temperature, the component circulations that make up each PCV spatially separate, suggesting possible deconfinement analogous to quark deconfinement in high-energy physics. Intercomponent interactions give rise to superfluid drag between the spin components, which we calculate analytically at zero temperature. We present the mass and spin superfluid phase diagram as a function of quadratic Zeeman energy q. At q = 0 the system is in an isotropic spin phase with SO(3) symmetry. Here the fluid response exhibits a system size dependence, suggesting the absence of a BKT transition. Despite this, for finite systems the decay of spin correlations changes from exponential to algebraic as the temperature is decreased.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Berezinskii-Kosterlitz-Thouless transitions in a ferromagnetic superfluid: Effects of axial magnetization
    Underwood, Andrew P. C.
    Groszek, Andrew J.
    Yu, Xiaoquan
    Blakie, P. B.
    Williamson, L. A.
    [J]. PHYSICAL REVIEW A, 2024, 110 (01)
  • [2] Holographic Berezinskii-Kosterlitz-Thouless Transitions
    Jensen, Kristan
    Karch, Andreas
    Son, Dam T.
    Thompson, Ethan G.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (04)
  • [3] Quantum Berezinskii-Kosterlitz-Thouless transition in square-lattice magnets with easy-plane anisotropy
    Capriotti, L
    Cuccoli, A
    Tognetti, V
    Vaia, R
    Verrucchi, P
    [J]. PHYSICA D, 1998, 119 (1-2): : 68 - 72
  • [4] Berezinskii-Kosterlitz-Thouless transition in two-dimensional XXZ easy-plane quantum Heisenberg magnets
    Capriotti, L
    Cuccoli, A
    Tognetti, V
    Vaia, R
    Verrucchi, P
    [J]. FLUCTUATION PHENOMENA IN HIGH TEMPERATURE SUPERCONDUCTORS, 1997, 32 : 397 - 404
  • [5] More holographic Berezinskii-Kosterlitz-Thouless transitions
    Jensen, Kristan
    [J]. PHYSICAL REVIEW D, 2010, 82 (04):
  • [6] Nonequilibrium Properties of Berezinskii-Kosterlitz-Thouless Phase Transitions
    Kloeckner, C.
    Karrasch, C.
    Kennes, D. M.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (14)
  • [7] Fidelity at Berezinskii-Kosterlitz-Thouless quantum phase transitions
    Sun, G.
    Kolezhuk, A. K.
    Vekua, T.
    [J]. PHYSICAL REVIEW B, 2015, 91 (01):
  • [8] Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of strained graphene
    Xu, Feng
    Zhang, Lei
    Jiang, Liyun
    Mou, Chung-Yu
    [J]. CHINESE JOURNAL OF PHYSICS, 2021, 70 : 288 - 296
  • [9] Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene
    Julku, A.
    Peltonen, T. J.
    Liang, L.
    Heikkila, T. T.
    Torma, P.
    [J]. PHYSICAL REVIEW B, 2020, 101 (06)
  • [10] Berezinskii-Kosterlitz-Thouless transitions in the six-state clock model
    Matsuo, H
    Nomura, K
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (12): : 2953 - 2964