Berezinskii-Kosterlitz-Thouless transitions in an easy-plane ferromagnetic superfluid

被引:2
|
作者
Underwood, Andrew P. C. [1 ,2 ]
Groszek, Andrew J. [3 ,4 ]
Yu, Xiaoquan [1 ,2 ,5 ]
Blakie, P. B. [1 ,2 ]
Williamson, L. A. [3 ]
机构
[1] Univ Otago, Ctr Quantum Sci, Dept Phys, Dunedin, New Zealand
[2] Univ Otago, Dodd Walls Ctr Photon & Quantum Technol, Dunedin, New Zealand
[3] Univ Queensland, ARC Ctr Excellence Engn Quantum Syst, Sch Math & Phys, St Lucia, Qld 4072, Australia
[4] Univ Queensland, ARC Ctr Excellence Future Low Energy Elect Technol, Sch Math & Phys, St Lucia, Qld 4072, Australia
[5] China Acad Engn Phys, Grad Sch, Beijing 100193, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
LONG-RANGE ORDER; HEISENBERG-ANTIFERROMAGNET; TRIANGULAR LATTICE; PHASE-TRANSITIONS; BOSE; DYNAMICS; VORTEX;
D O I
10.1103/PhysRevResearch.5.L012045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A two-dimensional spin-1 Bose gas exhibits two Berezinskii-Kosterlitz-Thouless (BKT) transitions in the easy-plane ferromagnetic phase. The higher-temperature transition is associated with superfluidity of the mass current determined predominantly by a single spin component. The lower-temperature transition is associated with superfluidity of the axial spin current, quasi-long-range order of the transverse spin density, and binding of polar-core spin vortices (PCVs). Above the spin BKT temperature, the component circulations that make up each PCV spatially separate, suggesting possible deconfinement analogous to quark deconfinement in high-energy physics. Intercomponent interactions give rise to superfluid drag between the spin components, which we calculate analytically at zero temperature. We present the mass and spin superfluid phase diagram as a function of quadratic Zeeman energy q. At q = 0 the system is in an isotropic spin phase with SO(3) symmetry. Here the fluid response exhibits a system size dependence, suggesting the absence of a BKT transition. Despite this, for finite systems the decay of spin correlations changes from exponential to algebraic as the temperature is decreased.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet
    Ze Hu
    Zhen Ma
    Yuan-Da Liao
    Han Li
    Chunsheng Ma
    Yi Cui
    Yanyan Shangguan
    Zhentao Huang
    Yang Qi
    Wei Li
    Zi Yang Meng
    Jinsheng Wen
    Weiqiang Yu
    Nature Communications, 11
  • [22] Broadening of the Berezinskii-Kosterlitz-Thouless transition by correlated disorder
    Maccari, I.
    Benfatto, L.
    Castellani, C.
    PHYSICAL REVIEW B, 2017, 96 (06)
  • [23] Berezinskii-Kosterlitz-Thouless transition with a constraint lattice action
    Bietenholz, Wolfgang
    Gerber, Urs
    Rejon-Barrera, Fernando G.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [24] Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas
    Hadzibabic, Zoran
    Kruger, Peter
    Cheneau, Marc
    Battelier, Baptiste
    Dalibard, Jean
    NATURE, 2006, 441 (7097) : 1118 - 1121
  • [25] Berezinskii-Kosterlitz-Thouless phase transition in a 2D-XY ferromagnetic monolayer
    Jiesu Wang
    Journal of Semiconductors, 2021, 42 (12) : 16 - 18
  • [26] Berezinskii-Kosterlitz-Thouless transition in rhenium nitride films
    Takiguchi, Kosuke
    Krockenberger, Yoshiharu
    Taniyasu, Yoshitaka
    Yamamoto, Hideki
    PHYSICAL REVIEW B, 2024, 110 (02)
  • [27] Flux noise near the Berezinskii-Kosterlitz-Thouless transition
    Wagenblast, KH
    Fazio, R
    JETP LETTERS, 1998, 68 (04) : 312 - 316
  • [28] Effect of amplitude fluctuations on the Berezinskii-Kosterlitz-Thouless transition
    Erez, Amir
    Meir, Yigal
    PHYSICAL REVIEW B, 2013, 88 (18):
  • [29] On Berezinskii-Kosterlitz-Thouless transition in monoaxial chiral helimagnets
    Proskurin, Igor
    Ovchinnikov, Alexander S.
    Kishine, Jun-ichiro
    8TH JOINT EUROPEAN MAGNETIC SYMPOSIA (JEMS2016), 2017, 903
  • [30] New insight into the Berezinskii-Kosterlitz-Thouless phase transition
    Gerber, Urs
    Bietenholz, Wolfgang
    Rejon-Barrera, Fernando G.
    XIV MEXICAN WORKSHOP ON PARTICLES AND FIELDS, 2015, 651