From combinatorial maps to correlation functions in loop models

被引:5
|
作者
Grans-Samuelsson, Linnea [1 ,5 ]
Jacobsen, Jesper Lykke [1 ,2 ,3 ]
Nivesvivat, Rongvoram [1 ,6 ]
Ribault, Sylvain [1 ]
Saleur, Hubert [1 ,4 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS, Gif Sur Yvette, France
[2] Univ Paris, Univ PSL, Sorbonne Univ, Lab Phys,Ecole Normale Super,ENS,CNRS, Paris, France
[3] Sorbonne Univ, Ecole Normale Super, CNRS, Lab Phys LPENS, Paris, France
[4] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA USA
[5] Microsoft Stn Q, Santa Barbara, CA 93106 USA
[6] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
来源
SCIPOST PHYSICS | 2023年 / 15卷 / 04期
基金
欧洲研究理事会;
关键词
POLYMER NETWORKS; EXPONENTS; SYMMETRY;
D O I
10.21468/SciPostPhys.15.4.147
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In two-dimensional statistical physics, correlation functions of the O(N) and Potts models may be written as sums over configurations of non-intersecting loops. We define sums associated to a large class of combinatorial maps (also known as ribbon graphs). We allow disconnected maps, but not maps that include monogons. Given a map with n vertices, we obtain a function of the moduli of the corresponding punctured Riemann surface. Due to the map's combinatorial (rather than topological) nature, that function is single-valued, and we call it an n-point correlation function. We conjecture that in the critical limit, such functions form a basis of solutions of certain conformal bootstrap equations. They include all correlation functions of the O(N) and Potts models, and correlation functions that do not belong to any known model. We test the conjecture by counting solutions of crossing symmetry for four-point functions on the sphere.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Twist operator correlation functions in O(n) loop models
    Simmons, Jacob J. H.
    Cardy, John
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (23)
  • [2] Combinatorial correlation functions in three-dimensional eight-vertex models
    Korepanov, Igor G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (04)
  • [3] Combinatorial aspects of boundary loop models
    Jacobsen, Jesper Lykke
    Saleur, Hubert
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [4] Combinatorial point for fused loop models
    Zinn-Justin, P.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (03) : 661 - 682
  • [5] Combinatorial Point for Fused Loop Models
    P. Zinn-Justin
    Communications in Mathematical Physics, 2007, 272 : 661 - 682
  • [6] Two-point boundary correlation functions of dense loop models
    Morin-Duchesne, Alexi
    Jacobsen, Jesper Lykke
    SCIPOST PHYSICS, 2018, 4 (06):
  • [7] GLUEBALL MASSES AND THE LOOP LOOP CORRELATION-FUNCTIONS
    ALBANESE, M
    COSTANTINI, F
    FIORENTINI, G
    FLORE, F
    LOMBARDO, MP
    TRIPICCIONE, R
    BACILIERI, P
    FONTI, L
    REMIDDI, E
    BERNASCHI, M
    CABIBBO, N
    FERNANDEZ, LA
    MARINARI, E
    PARISI, G
    SALINA, G
    CABASINO, S
    MARZANO, F
    PAOLUCCI, P
    PETRARCA, S
    RAPUANO, F
    MARCHESINI, P
    GIACOMELLI, P
    RUSACK, R
    PHYSICS LETTERS B, 1987, 197 (03) : 400 - 402
  • [8] Decay of random correlation functions for unimodal maps
    Baladi, V
    Benedicks, M
    Maume-Deschamps, V
    REPORTS ON MATHEMATICAL PHYSICS, 2000, 46 (1-2) : 15 - 26
  • [9] COMBINATORIAL MAPS
    VINCE, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (01) : 1 - 21
  • [10] Minimal combinatorial models for maps of an interval with a given set of periods
    Block, L
    Coven, EM
    Geller, W
    Hubner, K
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 707 - 728