Specular Electron Focusing between Gate-Defined Quantum Point Contacts in Bilayer Graphene

被引:7
|
作者
Ingla-Aynes, Josep [1 ]
Manesco, Antonio L. R. [1 ]
Ghiasi, Talieh S. S. [1 ]
Volosheniuk, Serhii [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [3 ]
van der Zant, Herre S. J. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[2] Natl Inst Mat Sci, Res Ctr Funct Mat, Tsukuba, Ibaraki 3050044, Japan
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
关键词
ballistic transport; bilayer graphene; quantumpoint contact; trigonal warping; CONDUCTION;
D O I
10.1021/acs.nanolett.3c00499
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report multiterminal measurements in a ballisticbilayer graphene(BLG) channel, where multiple spin- and valley-degenerate quantumpoint contacts (QPCs) are defined by electrostatic gating. By patterningQPCs of different shapes along different crystallographic directions,we study the effect of size quantization and trigonal warping on transverse electron focusing (TEF). Our TEF spectra show eight clearpeaks with comparable amplitudes and weak signatures of quantum interferenceat the lowest temperature, indicating that reflections at the gate-definededges are specular, and transport is phase coherent. The temperaturedependence of the focusing signal shows that, despite the small gate-inducedbandgaps in our sample (less than or similar to 45 meV), several peaks are visibleup to 100 K. The achievement of specular reflection, which is expectedto preserve the pseudospin information of the electron jets, is promisingfor the realization of ballistic interconnects for new valleytronicdevices.
引用
收藏
页码:5453 / 5459
页数:7
相关论文
共 50 条
  • [41] Valley Subband Splitting in Bilayer Graphene Quantum Point Contacts
    Kraft, R.
    Krainov, I. V.
    Gall, V.
    Dmitriev, A. P.
    Krupke, R.
    Gornyi, I. V.
    Danneau, R.
    PHYSICAL REVIEW LETTERS, 2018, 121 (25)
  • [42] Impact of vacancies on twisted bilayer graphene quantum point contacts
    Moles, Pablo
    Dominguez-Adame, Francisco
    Chico, Leonor
    PHYSICAL REVIEW B, 2024, 109 (04)
  • [43] Interplay of Aharonov-Bohm and Berry phases in gate-defined graphene quantum dots
    Heinl, Julia
    Schneider, Martin
    Brouwer, Piet W.
    PHYSICAL REVIEW B, 2013, 87 (24)
  • [44] Microwave sensing of Andreev bound states in a gate-defined superconducting quantum point contact
    Chidambaram, Vivek
    Kringhoj, Anders
    Casparis, Lucas
    Kuemmeth, Ferdinand
    Wang, Tiantian
    Thomas, Candice
    Gronin, Sergei
    Gardner, Geoffrey C.
    Cui, Zhengyi
    Liu, Chenlu
    Moors, Kristof
    Manfra, Michael J.
    Petersson, Karl D.
    Connolly, Malcolm R.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [45] Gate-defined coupled quantum dots in topological insulators
    Ertler, Christian
    Raith, Martin
    Fabian, Jaroslav
    PHYSICAL REVIEW B, 2014, 89 (07):
  • [46] Effective tuning methods for few-electron regime in gate-defined quantum dots
    Yang, Chanuk
    Jung, Hwanchul
    Choi, Hyung Kook
    Chung, Yunchul
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2025, 86 (02) : 106 - 112
  • [47] Tunable valley Hall effect in gate-defined graphene superlattices
    Martiny, Johannes H. J.
    Kaasbjerg, Kristen
    Jauho, Antti-Pekka
    PHYSICAL REVIEW B, 2019, 100 (15)
  • [48] Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
    van Diepen, C. J.
    Hsiao, T. -K.
    Mukhopadhyay, U.
    Reichl, C.
    Wegscheider, W.
    Vandersypen, L. M. K.
    PHYSICAL REVIEW X, 2021, 11 (04)
  • [49] Understanding Disorder in Monolayer Graphene Devices with Gate-Defined Superlattices
    Kammarchedu, Vinay
    Butler, Derrick
    Rashid, Asmaul Smitha
    Ebrahimi, Aida
    Kayyalha, Morteza
    arXiv,
  • [50] Understanding disorder in monolayer graphene devices with gate-defined superlattices
    Kammarchedu, Vinay
    Butler, Derrick
    Rashid, Asmaul Smitha
    Ebrahimi, Aida
    Kayyalha, Morteza
    NANOTECHNOLOGY, 2024, 35 (49)