Specular Electron Focusing between Gate-Defined Quantum Point Contacts in Bilayer Graphene

被引:7
|
作者
Ingla-Aynes, Josep [1 ]
Manesco, Antonio L. R. [1 ]
Ghiasi, Talieh S. S. [1 ]
Volosheniuk, Serhii [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [3 ]
van der Zant, Herre S. J. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[2] Natl Inst Mat Sci, Res Ctr Funct Mat, Tsukuba, Ibaraki 3050044, Japan
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
关键词
ballistic transport; bilayer graphene; quantumpoint contact; trigonal warping; CONDUCTION;
D O I
10.1021/acs.nanolett.3c00499
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report multiterminal measurements in a ballisticbilayer graphene(BLG) channel, where multiple spin- and valley-degenerate quantumpoint contacts (QPCs) are defined by electrostatic gating. By patterningQPCs of different shapes along different crystallographic directions,we study the effect of size quantization and trigonal warping on transverse electron focusing (TEF). Our TEF spectra show eight clearpeaks with comparable amplitudes and weak signatures of quantum interferenceat the lowest temperature, indicating that reflections at the gate-definededges are specular, and transport is phase coherent. The temperaturedependence of the focusing signal shows that, despite the small gate-inducedbandgaps in our sample (less than or similar to 45 meV), several peaks are visibleup to 100 K. The achievement of specular reflection, which is expectedto preserve the pseudospin information of the electron jets, is promisingfor the realization of ballistic interconnects for new valleytronicdevices.
引用
收藏
页码:5453 / 5459
页数:7
相关论文
共 50 条
  • [1] Gate-Defined Electron Interferometer in Bilayer Graphene
    Iwakiri, Shuichi
    de Vries, Folkert K.
    Portoles, Elias
    Zheng, Giulia
    Taniguchi, Takashi
    Watanabe, Kenji
    Ihn, Thomas
    Ensslin, Klaus
    NANO LETTERS, 2022, 22 (15) : 6292 - 6297
  • [2] Gate-defined quantum confinement in suspended bilayer graphene
    Allen, M. T.
    Martin, J.
    Yacoby, A.
    NATURE COMMUNICATIONS, 2012, 3
  • [3] Gate-defined quantum confinement in suspended bilayer graphene
    M. T. Allen
    J. Martin
    A. Yacoby
    Nature Communications, 3
  • [4] Gate-defined quantum point contacts in a germanium quantum well
    Gao, Han
    Kong, Zhen-Zhen
    Zhang, Po
    Luo, Yi
    Su, Haitian
    Liu, Xiao-Fei
    Wang, Gui-Lei
    Wang, Ji-Yin
    Xu, H. Q.
    NANOSCALE, 2024, 16 (21) : 10333 - 10339
  • [5] Charge Detection in Gate-Defined Bilayer Graphene Quantum Dots
    Kurzmann, Annika
    Overweg, Hiske
    Eich, Marius
    Pally, Alessia
    Rickhaus, Peter
    Pisoni, Riccardo
    Lee, Yongjin
    Watanabe, Kenji
    Taniguchi, Takashi
    Ihn, Thomas
    Ensslin, Klaus
    NANO LETTERS, 2019, 19 (08) : 5216 - 5221
  • [6] Semimetallic features in quantum transport through a gate-defined point contact in bilayer graphene
    Lane, T. L. M.
    Knothe, A.
    Fal'ko, V., I
    PHYSICAL REVIEW B, 2019, 100 (11)
  • [7] Electrostatic potential shape of gate-defined quantum point contacts
    Geier, M.
    Freudenfeld, J.
    Silva, J. T.
    Umansky, V
    Reuter, D.
    Wieck, A. D.
    Brouwer, P. W.
    Ludwig, S.
    PHYSICAL REVIEW B, 2020, 101 (16)
  • [8] Electron confinement in graphene with gate-defined quantum dots
    Fehske, Holger
    Hager, Georg
    Pieper, Andreas
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (08): : 1868 - 1871
  • [9] Electron dynamics in graphene with gate-defined quantum dots
    Pieper, A.
    Heinisch, R. L.
    Fehske, H.
    EPL, 2013, 104 (04)
  • [10] Gate-Defined Electron-Hole Double Dots in Bilayer Graphene
    Banszerus, L.
    Frohn, B.
    Epping, A.
    Neumaier, D.
    Watanabe, K.
    Taniguchi, T.
    Stampfer, C.
    NANO LETTERS, 2018, 18 (08) : 4785 - 4790