Predictors of response of rituximab in rheumatoid arthritis by weighted gene co-expression network analysis

被引:1
|
作者
Zhang, Shan [1 ]
Li, Peiting [1 ]
Wu, Pengjia [1 ]
Yang, Lei [1 ]
Liu, Xiaoxia [1 ]
Liu, Jun [1 ]
Zhang, Yong [1 ]
Zeng, Jiashun [1 ]
机构
[1] Guizhou Med Univ, Rheumatol & Immunol Dept, Affiliated Hosp, 28 Guiyi St, Guiyang 550004, Guizhou, Peoples R China
关键词
Biomarker; Efficacy; Prediction; Rheumatoid arthritis; Rituximab; BANK1; ASSOCIATION; MODEL;
D O I
10.1007/s10067-022-06438-y
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose The purpose of this study was to identify a biomarker that can predict the efficacy of rituximab (RTX) in the treatment of rheumatoid arthritis (RA) patients. Methods Utilized weighted gene co-expression network analysis (WGCNA) and LASSO regression analysis of whole blood transcriptome data (GSE15316 and GSE37107) related to RTX treatment for RA from the GEO database, the critical modules, and key genes related to the efficacy of RTX treatment for RA were found. The biological functions were further explored through enrichment analysis. The area under the ROC curve (AUC) was validated using the GSE54629 dataset. Results WGCNA screened 71 genes for a dark turquoise module that were correlated with the efficacy of RTX treatment for RA (r = 0.42, P < 0.05). Through the calculation of gene significance (GS) and module membership (MM), 12 important genes were identified; in addition, 21 important genes were screened by the LASSO regression model; two key genes were obtained from the intersection between the important genes. Then, BANK1 (AUC = 0.704, P < 0.05) was identified as a potential biomarker to predict the efficacy of RTX treatment for RA by ROC curve evaluation of the treatment and validation groups. BANK1 gene expression was significantly decreased after RTX treatment, and a statistically significant difference was found (log FC = - 2.08, P < 0.05). Immune cell infiltration analysis revealed that the infiltration of CD4 + T cell memory subset was increased in the group with high BANK1 expression, and a statistically significant difference was found (P < 0.05). Conclusions BANK1 can be used as a potential biomarker to predict the response of RTX treatment in RA patients.
引用
收藏
页码:529 / 538
页数:10
相关论文
共 50 条
  • [41] Identification of glioblastomagene prognosis modules based on weighted gene co-expression network analysis
    Xu, Pengfei
    Yang, Jian
    Liu, Junhui
    Yang, Xue
    Liao, Jianming
    Yuan, Fanen
    Xu, Yang
    Liu, Baohui
    Chen, Qianxue
    BMC MEDICAL GENOMICS, 2018, 11
  • [42] Identify Key Genes by Weighted Gene Co-Expression Network Analysis for Lung Adenocarcinoma
    Xu, Jichen
    Zong, Xianchun
    Ren, Qianshu
    Wang, Hongyu
    Zhao, Lijuan
    Ji, Jingshuang
    Wang, Jiaxing
    Jiao, Zhimin
    Guo, Zhaokui
    Liang, Xiaofei
    NANO LIFE, 2019, 9 (1-2)
  • [43] Gene Co-Expression Network Analysis in Schizophrenia
    Roussos, Panos
    BIOLOGICAL PSYCHIATRY, 2013, 73 (09) : 24S - 24S
  • [44] Psoriasis Associated Hub Genes Revealed by Weighted Gene Co-Expression Network Analysis
    Darvish, Zeinab
    Ghanbari, Saeed
    Afshar, Saeid
    Tapak, Leili
    Amini, Payam
    CELL JOURNAL, 2023, 25 (06) : 418 - 426
  • [45] Identifying novel biomarkers in hepatocellular carcinoma by weighted gene co-expression network analysis
    Li, Boxuan
    Pu, Ke
    Wu, Xinan
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (07) : 11418 - 11431
  • [46] Discovery of core genes in colorectal cancer by weighted gene co-expression network analysis
    Liao, Cun
    Huang, Xue
    Gong, Yizhen
    Lin, Qiuning
    ONCOLOGY LETTERS, 2019, 18 (03) : 3137 - 3149
  • [47] Weighted Gene Co-expression Network Analysis in Identification of Endometrial Cancer Prognosis Markers
    Zhu, Xiao-Lu
    Ai, Zhi-Hong
    Wang, Juan
    Xu, Yan-Li
    Teng, Yin-Cheng
    ASIAN PACIFIC JOURNAL OF CANCER PREVENTION, 2012, 13 (09) : 4607 - 4611
  • [48] Application of Weighted Gene Co-expression Network Analysis for Data from Paired Design
    Li, Jianqiang
    Zhou, Doudou
    Qiu, Weiliang
    Shi, Yuliang
    Yang, Ji-Jiang
    Chen, Shi
    Wang, Qing
    Pan, Hui
    SCIENTIFIC REPORTS, 2018, 8
  • [49] Weighted Gene Co-expression Network Analysis of Key Biomarkers Associated With Bronchopulmonary Dysplasia
    Cai, Yao
    Ma, Fei
    Qu, LiuHong
    Liu, Binqing
    Xiong, Hui
    Ma, Yanmei
    Li, Sitao
    Hao, Hu
    FRONTIERS IN GENETICS, 2020, 11
  • [50] Comprehensive analysis of biomarkers for prostate cancer based on weighted gene co-expression network analysis
    Chen, Xuan
    Wang, Jingyao
    Peng, Xiqi
    Liu, Kaihao
    Zhang, Chunduo
    Zeng, Xingzhen
    Lai, Yongqing
    MEDICINE, 2020, 99 (14)