Predictors of response of rituximab in rheumatoid arthritis by weighted gene co-expression network analysis

被引:1
|
作者
Zhang, Shan [1 ]
Li, Peiting [1 ]
Wu, Pengjia [1 ]
Yang, Lei [1 ]
Liu, Xiaoxia [1 ]
Liu, Jun [1 ]
Zhang, Yong [1 ]
Zeng, Jiashun [1 ]
机构
[1] Guizhou Med Univ, Rheumatol & Immunol Dept, Affiliated Hosp, 28 Guiyi St, Guiyang 550004, Guizhou, Peoples R China
关键词
Biomarker; Efficacy; Prediction; Rheumatoid arthritis; Rituximab; BANK1; ASSOCIATION; MODEL;
D O I
10.1007/s10067-022-06438-y
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose The purpose of this study was to identify a biomarker that can predict the efficacy of rituximab (RTX) in the treatment of rheumatoid arthritis (RA) patients. Methods Utilized weighted gene co-expression network analysis (WGCNA) and LASSO regression analysis of whole blood transcriptome data (GSE15316 and GSE37107) related to RTX treatment for RA from the GEO database, the critical modules, and key genes related to the efficacy of RTX treatment for RA were found. The biological functions were further explored through enrichment analysis. The area under the ROC curve (AUC) was validated using the GSE54629 dataset. Results WGCNA screened 71 genes for a dark turquoise module that were correlated with the efficacy of RTX treatment for RA (r = 0.42, P < 0.05). Through the calculation of gene significance (GS) and module membership (MM), 12 important genes were identified; in addition, 21 important genes were screened by the LASSO regression model; two key genes were obtained from the intersection between the important genes. Then, BANK1 (AUC = 0.704, P < 0.05) was identified as a potential biomarker to predict the efficacy of RTX treatment for RA by ROC curve evaluation of the treatment and validation groups. BANK1 gene expression was significantly decreased after RTX treatment, and a statistically significant difference was found (log FC = - 2.08, P < 0.05). Immune cell infiltration analysis revealed that the infiltration of CD4 + T cell memory subset was increased in the group with high BANK1 expression, and a statistically significant difference was found (P < 0.05). Conclusions BANK1 can be used as a potential biomarker to predict the response of RTX treatment in RA patients.
引用
收藏
页码:529 / 538
页数:10
相关论文
共 50 条
  • [21] Weighted gene co-expression network analysis of gene modules for the prognosis of esophageal cancer
    Cong Zhang
    Qian Sun
    Journal of Huazhong University of Science and Technology [Medical Sciences], 2017, 37 : 319 - 325
  • [22] Parameterization of asymmetric sigmoid functions in weighted gene co-expression network analysis
    Karabekmez, Muhammed Erkan
    Yarici, Merve
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 108
  • [23] Novel biomarkers identified by weighted gene co-expression network analysis for atherosclerosis
    Ni, Jiajun
    Huang, Kaijian
    Xu, Jialin
    Lu, Qi
    Chen, Chu
    HERZ, 2024, 49 (03) : 198 - 209
  • [24] PyWGCNA: a Python']Python package for weighted gene co-expression network analysis
    Rezaie, Narges
    Reese, Farilie
    Mortazavi, Ali
    BIOINFORMATICS, 2023, 39 (07)
  • [25] Weighted gene co-expression network analysis for hub genes in colorectal cancer
    Xu, Zheng
    Wang, Jianing
    Wang, Guosheng
    PHARMACOLOGICAL REPORTS, 2024, 76 (01) : 140 - 153
  • [26] Analysis on Technology Convergence Mechanism Using Weighted Gene Co-expression Network
    Miao, Hong
    Wang, Yan
    Huang, Lucheng
    Wu, Feifei
    Li, Xin
    2018 PORTLAND INTERNATIONAL CONFERENCE ON MANAGEMENT OF ENGINEERING AND TECHNOLOGY (PICMET '18): MANAGING TECHNOLOGICAL ENTREPRENEURSHIP: THE ENGINE FOR ECONOMIC GROWTH, 2018,
  • [27] Assessment of pulmonary fibrosis using weighted gene co-expression network analysis
    Drake, Christina
    Zobl, Walter
    Escher, Sylvia E.
    FRONTIERS IN TOXICOLOGY, 2024, 6
  • [28] Weighted gene co-expression network analysis for hub genes in colorectal cancer
    Zheng Xu
    Jianing Wang
    Guosheng Wang
    Pharmacological Reports, 2024, 76 : 140 - 153
  • [29] Weighted gene co-expression network analysis of hub genes in lung adenocarcinoma
    Luo, Xuan
    Feng, Lei
    Xu, WenBo
    Bai, XueJing
    Wu, MengNa
    EVOLUTIONARY BIOINFORMATICS, 2021, 17
  • [30] DISCOVERING MODULES OF MIRNA CO-EXPRESSION INVOLVED IN CAROTID ATHEROSCLEROSIS BY WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS.
    Zarubin, A. A.
    Markov, A. V.
    Sleptcov, A. A.
    Sharysh, D. V.
    Nazarenko, M. S.
    ATHEROSCLEROSIS, 2021, 331 : E220 - E220