The Attention Mechanism Performance Analysis for Football Players Using the Internet of Things and Deep Learning

被引:3
|
作者
Mou, Chuan [1 ]
机构
[1] Sichuan Univ, Inst Phys Educ, Chengdu 610065, Sichuan, Peoples R China
关键词
Internet of Things; deep learning; attention mechanism; football player performance analysis; human body parsing; IDENTIFICATION;
D O I
10.1109/ACCESS.2024.3350036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes a novel Class Aware Network (CANet) for analyzing football player performance by decoding their body movements. Firstly, the role of the Internet of Things in football sports analysis and the advantages of deep learning techniques are introduced. Secondly, pyramid pooling modules and attention mechanisms are introduced. Moreover, the Group-split-bottleneck (GS-bt) module is employed, and the CANet is designed to extract and utilize multi-scale feature information and enhance the network's ability to perceive details. Finally, the effectiveness of the proposed model is validated through comparisons with other models. The results show that in image classification experiments, the mean accuracy of the GS-bt module is at least 2.79% higher than that of other models. In human body parsing experiments, results from two different datasets demonstrate that the CANet model achieves the highest mean Intersection over Union, improving by at least 6.02% compared to other models. These findings indicate that the proposed CANet model performs better in image classification and human body parsing tasks, presenting higher accuracy and generalization capabilities. This work provides new methods and technologies for analyzing football player performance, potentially promoting sports development and application in athletics.
引用
收藏
页码:4948 / 4957
页数:10
相关论文
共 50 条
  • [31] Using Deep Reinforcement Learning to Improve Sensor Selection in the Internet of Things
    Rashtian, Hootan
    Gopalakrishnan, Sathish
    IEEE ACCESS, 2020, 8 : 95208 - 95222
  • [32] Analysis of anomaly detection method for Internet of things based on deep learning
    Ma, Wei
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2020, 31 (12):
  • [33] Performance analysis of blockchain-based secured distributed deep federated learning for wearable internet of things
    Surjit Singh
    Aman Arora
    Girik Garg
    Anushka Goyal
    Nipun Gandhi
    Cluster Computing, 2025, 28 (5)
  • [34] Experimental Analysis of Classification for Different Internet of Things (IoT) Network Attacks Using Machine Learning and Deep learning
    Tasnim, Anika
    Hossain, Nigah
    Parvin, Nazia
    Tabassum, Sabrina
    Rahman, Rafeed
    Hossain, Muhammad Iqbal
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 406 - 410
  • [35] Attention-enhanced deep learning and machine learning framework for knee osteoarthritis severity detection in football players using X-ray images
    Wang, Xu
    Wang, Tianpeng
    Su, Zhanguo
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2025, 18 (02)
  • [36] Deep Learning in Big Data and Internet of Things
    Tomar, Dimpal
    Tomar, Pradeep
    Kaur, Gurjit
    INFORMATION, COMMUNICATION AND COMPUTING TECHNOLOGY, ICICCT 2018, 2019, 835 : 70 - 81
  • [37] Survey on the application of deep learning in the Internet of Things
    Shadroo, Shabnam
    Rahmani, Amir Masoud
    Rezaee, Ali
    TELECOMMUNICATION SYSTEMS, 2022, 79 (04) : 601 - 627
  • [38] Survey on the application of deep learning in the Internet of Things
    Shabnam Shadroo
    Amir Masoud Rahmani
    Ali Rezaee
    Telecommunication Systems, 2022, 79 : 601 - 627
  • [39] Analysis of slope stochastic fields using a novel deep learning model with attention mechanism
    Ma, Ning
    Yao, Zaizhen
    FRONTIERS IN EARTH SCIENCE, 2024, 12
  • [40] Security threat model under internet of things using deep learning and edge analysis of cyberspace governance
    Li, Zhi
    Ge, Yuemeng
    Guo, Jieying
    Chen, Mengyao
    Wang, Junwei
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2022, 13 (SUPPL 3) : 1164 - 1176