The Attention Mechanism Performance Analysis for Football Players Using the Internet of Things and Deep Learning

被引:3
|
作者
Mou, Chuan [1 ]
机构
[1] Sichuan Univ, Inst Phys Educ, Chengdu 610065, Sichuan, Peoples R China
关键词
Internet of Things; deep learning; attention mechanism; football player performance analysis; human body parsing; IDENTIFICATION;
D O I
10.1109/ACCESS.2024.3350036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes a novel Class Aware Network (CANet) for analyzing football player performance by decoding their body movements. Firstly, the role of the Internet of Things in football sports analysis and the advantages of deep learning techniques are introduced. Secondly, pyramid pooling modules and attention mechanisms are introduced. Moreover, the Group-split-bottleneck (GS-bt) module is employed, and the CANet is designed to extract and utilize multi-scale feature information and enhance the network's ability to perceive details. Finally, the effectiveness of the proposed model is validated through comparisons with other models. The results show that in image classification experiments, the mean accuracy of the GS-bt module is at least 2.79% higher than that of other models. In human body parsing experiments, results from two different datasets demonstrate that the CANet model achieves the highest mean Intersection over Union, improving by at least 6.02% compared to other models. These findings indicate that the proposed CANet model performs better in image classification and human body parsing tasks, presenting higher accuracy and generalization capabilities. This work provides new methods and technologies for analyzing football player performance, potentially promoting sports development and application in athletics.
引用
收藏
页码:4948 / 4957
页数:10
相关论文
共 50 条
  • [21] Towards cough sound analysis using the Internet of things and deep learning for pulmonary disease prediction
    Kumar, Ajay
    Abhishek, Kumar
    Ghalib, Muhammad R.
    Nerurkar, Pranav
    Shah, Kunjal
    Chandane, Madhav
    Bhirud, Sunil
    Patel, Dhiren
    Busnel, Yann
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2022, 33 (10):
  • [22] Analysis of Time Series Data Generated From the Internet of Things Using Deep Learning Models
    Yakoi, Polycarp Shizawaliyi
    Meng, Xiangfu
    Cui, Shuolin
    Suleman, Danladi
    Yang, Xueyong
    IEEE ACCESS, 2023, 11 : 133313 - 133328
  • [23] Improving the Performance of ALOHA with Internet of Things Using Reinforcement Learning
    Acik, Sami
    Kosunalp, Selahattin
    Tabakcioglu, Mehmet Baris
    Iliev, Teodor
    ELECTRONICS, 2023, 12 (17)
  • [24] Securing internet of things using machine and deep learning methods: a survey
    Ghaffari, Ali
    Jelodari, Nasim
    Pouralish, Samira
    Derakhshanfard, Nahide
    Arasteh, Bahman
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (07): : 9065 - 9089
  • [25] Internet of Things attack detection using hybrid Deep Learning Model
    Sahu, Amiya Kumar
    Sharma, Suraj
    Tanveer, M.
    Raja, Rohit
    COMPUTER COMMUNICATIONS, 2021, 176 : 146 - 154
  • [26] Mathematical Framework for Wearable Devices in the Internet of Things Using Deep Learning
    Mirza, Olfat M.
    Mujlid, Hana
    Manoharan, Hariprasath
    Selvarajan, Shitharth
    Srivastava, Gautam
    Khan, Muhammad Attique
    DIAGNOSTICS, 2022, 12 (11)
  • [27] Malware Detection in Internet of Things (IoT) Devices Using Deep Learning
    Riaz, Sharjeel
    Latif, Shahzad
    Usman, Syed Muhammad
    Ullah, Syed Sajid
    Algarni, Abeer D.
    Yasin, Amanullah
    Anwar, Aamir
    Elmannai, Hela
    Hussain, Saddam
    SENSORS, 2022, 22 (23)
  • [28] Challenges in internet of things towards the security using deep learning techniques
    Ravikumar K.C.
    Chiranjeevi P.
    Manikanda Devarajan N.
    Kaur C.
    Taloba A.I.
    Measurement: Sensors, 2022, 24
  • [29] The Short Video Popularity Prediction Using Internet of Things and Deep Learning
    He, Zichen
    Li, Danian
    IEEE ACCESS, 2024, 12 : 47508 - 47517
  • [30] Internet of Things (IoTs) Security: Intrusion Detection using Deep Learning
    Sahingoz, Ozgur Koray
    Cekmez, Ugur
    Buldu, Ali
    JOURNAL OF WEB ENGINEERING, 2021, 20 (06): : 1721 - 1760