The influence of plant residues on soil aggregation and carbon content: A meta-analysis

被引:11
|
作者
Husain, Hana [1 ,2 ]
Dijkstra, Feike A. [1 ]
机构
[1] Univ Sydney, Sydney Inst Agr, Sch Life & Environm Sci, Camden, Australia
[2] Univ Sydney, Ctr Carbon Water & Food, 380 Werombi Rd, Camden, NSW 2570, Australia
关键词
carbon sequestration; crop residue; soil amendments; soil structure; ORGANIC-MATTER; MACROAGGREGATE DYNAMICS; MECHANISMS; STABILIZATION; SATURATION; STABILITY; TURNOVER; NITROGEN; STOCKS; INPUT;
D O I
10.1002/jpln.202200297
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
BackgroundSoil aggregation and organic carbon (OC) content are important indicators of soil quality that can be improved with plant residue amendments. The extent of the effects of plant residue amendments on soil aggregation and OC content across different plant residue and soil types is not fully understood. AimIn this meta-analysis, we evaluated the effects of plant residue amendments on soil aggregation and OC content for different plant residues (fresh, charred) and soil types varying in clay content, initial OC content, and pH. MethodsOur meta-analysis included 50 published studies (total of 299 paired observations). We estimated the response ratios of mean weight diameter (MWD) and separate aggregate size classes, total soil OC (TSC), and aggregate-associated OC. We also considered the effect of experimental factors (study duration, residue type, residue amount, initial soil OC, clay content, and pH). ResultsThe benefit of plant residue amendment on soil aggregation was larger in soils with initially low OC content and neutral pH. Initial soil OC content and pH were more important than soil clay content for OC storage in soil aggregates. Both fresh and charred plant residue amendments were effective in forming aggregates, whereas charred residues were more effective in increasing TSC. We found only a weak positive relationship between the response ratio of TSC and MWD indicating that other factors besides soil aggregation contributed to the increase in soil C storage. ConclusionsWhile plant residue amendments can enhance soil aggregation and TSC, these effects are likely governed by the type of plant residue and soil properties such as the initial soil pH and OC content.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [41] The Effects of N Addition on Soil Microbial Residues in Croplands and Forests: A Meta-analysis
    Qi Chen
    Xueli Ding
    Bin Zhang
    Journal of Soil Science and Plant Nutrition, 2023, 23 : 1449 - 1458
  • [42] Straw application and soil organic carbon change: A meta-analysis
    Wang, Qiuju
    Liu, Xin
    Li, Jingyang
    Yang, Xiaoyu
    Guo, Zhenhua
    SOIL AND WATER RESEARCH, 2021, 16 (02) : 112 - 120
  • [43] New soil carbon sequestration with nitrogen enrichment: a meta-analysis
    Xiaomin Huang
    César Terrer
    Feike A. Dijkstra
    Bruce A. Hungate
    Weijian Zhang
    Kees Jan van Groenigen
    Plant and Soil, 2020, 454 : 299 - 310
  • [44] Soil carbon sequestration by agroforestry systems in China: A meta-analysis
    Huebner, Rico
    Kuehnel, Anna
    Lu, Jie
    Dettmann, Hannes
    Wang, Weiqi
    Wiesmeier, Martin
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2021, 315
  • [45] Soil Organic Carbon in Alley Cropping Systems: A Meta-Analysis
    Ivezic, Vladimir
    Lorenz, Klaus
    Lal, Rattan
    SUSTAINABILITY, 2022, 14 (03)
  • [46] New soil carbon sequestration with nitrogen enrichment: a meta-analysis
    Huang, Xiaomin
    Terrer, Cesar
    Dijkstra, Feike A.
    Hungate, Bruce A.
    Zhang, Weijian
    van Groenigen, Kees Jan
    PLANT AND SOIL, 2020, 454 (1-2) : 299 - 310
  • [47] Soil organic carbon in irrigated agricultural systems: A meta-analysis
    Emde, David
    Hannam, Kirsten D.
    Most, Ilka
    Nelson, Louise M.
    Jones, Melanie D.
    GLOBAL CHANGE BIOLOGY, 2021, 27 (16) : 3898 - 3910
  • [48] Carbon concentration predicts soil contamination of plant residues
    Franzluebbers, Alan J.
    AGRICULTURAL & ENVIRONMENTAL LETTERS, 2020, 5 (01)
  • [49] Plant–soil feedbacks of exotic plant species across life forms: a meta-analysis
    Annelein Meisner
    W. H. Gera Hol
    Wietse de Boer
    Jennifer Adams Krumins
    David A. Wardle
    Wim H. van der Putten
    Biological Invasions, 2014, 16 : 2551 - 2561
  • [50] Agricultural land abandonment promotes soil aggregation and aggregate-associated organic carbon accumulation: a global meta-analysis
    Qin, Wenping
    Wang, Kaini
    Min, Kexin
    Zhang, Yongkun
    Wang, Zhaoqi
    Liu, Xiang
    PLANT AND SOIL, 2024, 503 (1-2) : 629 - 644