The influence of plant residues on soil aggregation and carbon content: A meta-analysis

被引:11
|
作者
Husain, Hana [1 ,2 ]
Dijkstra, Feike A. [1 ]
机构
[1] Univ Sydney, Sydney Inst Agr, Sch Life & Environm Sci, Camden, Australia
[2] Univ Sydney, Ctr Carbon Water & Food, 380 Werombi Rd, Camden, NSW 2570, Australia
关键词
carbon sequestration; crop residue; soil amendments; soil structure; ORGANIC-MATTER; MACROAGGREGATE DYNAMICS; MECHANISMS; STABILIZATION; SATURATION; STABILITY; TURNOVER; NITROGEN; STOCKS; INPUT;
D O I
10.1002/jpln.202200297
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
BackgroundSoil aggregation and organic carbon (OC) content are important indicators of soil quality that can be improved with plant residue amendments. The extent of the effects of plant residue amendments on soil aggregation and OC content across different plant residue and soil types is not fully understood. AimIn this meta-analysis, we evaluated the effects of plant residue amendments on soil aggregation and OC content for different plant residues (fresh, charred) and soil types varying in clay content, initial OC content, and pH. MethodsOur meta-analysis included 50 published studies (total of 299 paired observations). We estimated the response ratios of mean weight diameter (MWD) and separate aggregate size classes, total soil OC (TSC), and aggregate-associated OC. We also considered the effect of experimental factors (study duration, residue type, residue amount, initial soil OC, clay content, and pH). ResultsThe benefit of plant residue amendment on soil aggregation was larger in soils with initially low OC content and neutral pH. Initial soil OC content and pH were more important than soil clay content for OC storage in soil aggregates. Both fresh and charred plant residue amendments were effective in forming aggregates, whereas charred residues were more effective in increasing TSC. We found only a weak positive relationship between the response ratio of TSC and MWD indicating that other factors besides soil aggregation contributed to the increase in soil C storage. ConclusionsWhile plant residue amendments can enhance soil aggregation and TSC, these effects are likely governed by the type of plant residue and soil properties such as the initial soil pH and OC content.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [21] The influence of grazing intensity on soil organic carbon storage in grassland of China: A meta-analysis
    Hao, Xinghai
    Yang, Juejie
    Dong, Shikui
    He, Fengcai
    Zhang, Yuhao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 924
  • [22] Response of soil aggregation and associated organic carbon to organic amendment and its controls: A global meta-analysis
    Ma, Shihao
    Cao, Yudong
    Lu, Jianwei
    Ren, Tao
    Cong, Rihuan
    Lu, Zhifeng
    Zhu, Jun
    Li, Xiaokun
    CATENA, 2024, 237
  • [23] Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis
    Lu, Xiaofei
    Hou, Enqing
    Guo, Jieyun
    Gilliam, Frank S.
    Li, Jianlong
    Tang, Songbo
    Kuang, Yuanwen
    GLOBAL CHANGE BIOLOGY, 2021, 27 (12) : 2780 - 2792
  • [24] Differential impacts of microplastics on carbon and nitrogen cycling in plant-soil systems: A meta-analysis
    Liu, Yige
    Chen, Siyi
    Zhou, Pengyu
    Li, Haochen
    Wan, Quan
    Lu, Ying
    Li, Bo
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 948
  • [25] Divergent responses of soil aggregation and aggregate-carbon to fertilization regimes jointly explain soil organic carbon accrual in agroecosystems: A meta-analysis
    Lin, Liwen
    Chen, Hao
    Peng, Yutao
    Yin, Junhui
    Guo, Junjie
    He, Chuntao
    Huang, Xiaochen
    Xin, Guorong
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2025, 378
  • [26] Influence of poultry litter on nutrient availability and fate in plant-soil systems: A meta-analysis
    Lin, Y.
    Watts, D. B.
    Runion, G. B.
    JOURNAL OF SOIL AND WATER CONSERVATION, 2022, 77 (03) : 230 - 239
  • [27] The Effect of Harvest on Forest Soil Carbon: A Meta-Analysis
    James, Jason
    Harrison, Rob
    FORESTS, 2016, 7 (12)
  • [28] Soil carbon sequestration in agroforestry systems: a meta-analysis
    Andrea De Stefano
    Michael G. Jacobson
    Agroforestry Systems, 2018, 92 : 285 - 299
  • [29] Soil carbon sequestration in agroforestry systems: a meta-analysis
    De Stefano, Andrea
    Jacobson, Michael G.
    AGROFORESTRY SYSTEMS, 2018, 92 (02) : 285 - 299
  • [30] A global meta-analysis of soil organic carbon in the Anthropocene
    Damien Beillouin
    Marc Corbeels
    Julien Demenois
    David Berre
    Annie Boyer
    Abigail Fallot
    Frédéric Feder
    Rémi Cardinael
    Nature Communications, 14