Reinforcement Learning Requires Human-in-the-Loop Framing and Approaches

被引:0
|
作者
Taylor, Matthew E. [1 ,2 ,3 ]
机构
[1] Univ Alberta, Edmonton, AB, Canada
[2] Alberta Machine Intelligence Inst, Edmonton, AB, Canada
[3] AI Redefined, Montreal, PQ, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Reinforcement Learning; Human-Agent Interaction; Human in the Loop; Interactive Machine Learning;
D O I
10.3233/FAIA230098
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reinforcement learning (RL) is typically framed as a machine learning paradigm where agents learn to act autonomously in complex environments. This paper argues instead that RL is fundamentally human in the loop (HitL). The reward functions (and other components) of a Markov decision process are defined by humans. The decisions to tackle a certain problem, and deploy a learned solution, are taken by humans. Humans can also play a critical role in providing information to the agent throughout its life cycle to better succeed at the problem in question. We end by highlighting a set of critical HitL research questions, which, if ignored, could cause RL to fail to live up to its full potential.
引用
收藏
页码:351 / 360
页数:10
相关论文
共 50 条
  • [41] Human-in-the-loop machine learning with applications for population health
    Chen, Long
    Wang, Jiangtao
    Guo, Bin
    Chen, Liming
    CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2023, 5 (01) : 1 - 12
  • [42] Human-in-the-Loop Predictive Analytics Using Statistical Learning
    Ganesan, Anusha
    Paul, Anand
    Nagabushnam, Ganesan
    Gul, Malik Junaid Jami
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [43] Accelerating Human-in-the-loop Machine Learning: Challenges and Opportunities
    Xin, Doris
    Ma, Litian
    Liu, Jialin
    Macke, Stephen
    Song, Shuchen
    Parameswaran, Aditya
    PROCEEDINGS OF THE SECOND WORKSHOP ON DATA MANAGEMENT FOR END-TO-END MACHINE LEARNING, 2018,
  • [44] Applications, Challenges, and Future Directions of Human-in-the-Loop Learning
    Kumar, Sushant
    Datta, Sumit
    Singh, Vishakha
    Datta, Deepanwita
    Kumar Singh, Sanjay
    Sharma, Ritesh
    IEEE ACCESS, 2024, 12 : 75735 - 75760
  • [45] Active defect discovery: A human-in-the-loop learning method
    Shen, Bo
    Kong, Zhenyu
    IISE TRANSACTIONS, 2024, 56 (06) : 638 - 651
  • [46] Human-in-the-Loop SLAM
    Nashed, Samer B.
    Biswas, Joydeep
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 1503 - 1510
  • [47] Human-in-the-Loop Mixup
    Collins, Katherine M.
    Bhatt, Umang
    Liu, Weiyang
    Piratla, Vihari
    Sucholutsky, Ilia
    Love, Bradley
    Weller, Adrian
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 454 - 464
  • [48] A Hybrid Human-in-the-Loop Deep Reinforcement Learning Method for UAV Motion Planning for Long Trajectories with Unpredictable Obstacles
    Zhang, Sitong
    Li, Yibing
    Ye, Fang
    Geng, Xiaoyu
    Zhou, Zitao
    Shi, Tuo
    DRONES, 2023, 7 (05)
  • [49] Fast Human-in-the-Loop Control for HVAC Systems via Meta-Learning and Model-Based Offline Reinforcement Learning
    Chen, Liangliang
    Meng, Fei
    Zhang, Ying
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2023, 8 (03): : 504 - 521
  • [50] Inferring Intent for Novice Human-in-the-Loop Iterative Learning Control
    Warrier, Rahul B.
    Devasia, Santosh
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (05) : 1698 - 1710