Accelerating Human-in-the-loop Machine Learning: Challenges and Opportunities

被引:49
|
作者
Xin, Doris [1 ]
Ma, Litian [1 ]
Liu, Jialin [1 ]
Macke, Stephen [1 ]
Song, Shuchen [1 ]
Parameswaran, Aditya [1 ]
机构
[1] Univ Illinois Urbana Champaign UIUC, Champaign, IL 61820 USA
基金
美国国家科学基金会;
关键词
D O I
10.1145/3209889.3209897
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Development of machine learning (ML) workflows is a tedious process of iterative experimentation: developers repeatedly make changes to workflows until the desired accuracy is attained. We describe our vision for a "human-in-the-loop" ML system that accelerates this process: by intelligently tracking changes and intermediate results over time, such a system can enable rapid iteration, quick responsive feedback, introspection and debugging, and background execution and automation. We finally describe Helix, our preliminary attempt at such a system that has already led to speedups of upto 10x on typical iterative workflows against competing systems.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] HELIX: Accelerating Human-in-the-loop Machine Learning
    Xin, Doris
    Ma, Litian
    Liu, Jialin
    Macke, Stephen
    Song, Shuchen
    Parameswaran, Aditya
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2018, 11 (12): : 1958 - 1961
  • [2] Human-in-the-Loop Reinforcement Learning: A Survey and Position on Requirements, Challenges, and Opportunities
    Retzlaff, Carl Orge
    Das, Srijita
    Wayllace, Christabel
    Mousavi, Payam
    Afshari, Mohammad
    Yang, Tianpei
    Saranti, Anna
    Angerschmid, Alessa
    Taylor, Matthew E.
    Holzinger, Andreas
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2024, 79 : 359 - 415
  • [3] Human-in-the-Loop Reinforcement Learning: A Survey and Position on Requirements, Challenges, and Opportunities
    Retzlaff C.O.
    Das S.
    Wayllace C.
    Mousavi P.
    Afshari M.
    Yang T.
    Saranti A.
    Angerschmid A.
    Taylor M.E.
    Holzinger A.
    Journal of Artificial Intelligence Research, 2024, 79 : 359 - 415
  • [4] A survey of human-in-the-loop for machine learning
    Wu, Xingjiao
    Xiao, Luwei
    Sun, Yixuan
    Zhang, Junhang
    Ma, Tianlong
    He, Liang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 135 : 364 - 381
  • [5] Human-in-the-loop Applied Machine Learning
    Brodley, Carla E.
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 1 - 1
  • [6] Human-in-the-loop machine learning: a state of the art
    Mosqueira-Rey, Eduardo
    Hernandez-Pereira, Elena
    Alonso-Rios, David
    Bobes-Bascaran, Jose
    Fernandez-Leal, Angel
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (04) : 3005 - 3054
  • [7] Human-in-the-loop machine learning: a state of the art
    Eduardo Mosqueira-Rey
    Elena Hernández-Pereira
    David Alonso-Ríos
    José Bobes-Bascarán
    Ángel Fernández-Leal
    Artificial Intelligence Review, 2023, 56 : 3005 - 3054
  • [8] Human-in-the-Loop Machine Learning for the Treatment of Pancreatic Cancer
    Mosqueira-Rey, Eduardo
    Perez-Sanchez, Alberto
    Hernandez-Pereira, Elena
    Alonso-Rios, David
    Bobes-Bascaran, Jose
    Fernandez-Leal, Angel
    Moret-Bonillo, Vicente
    Vidal-Insua, Yolanda
    Vazquez-Rivera, Francisca
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [9] Human-in-the-loop machine learning with applications for population health
    Long Chen
    Jiangtao Wang
    Bin Guo
    Liming Chen
    CCF Transactions on Pervasive Computing and Interaction, 2023, 5 : 1 - 12
  • [10] Applications, Challenges, and Future Directions of Human-in-the-Loop Learning
    Kumar, Sushant
    Datta, Sumit
    Singh, Vishakha
    Datta, Deepanwita
    Kumar Singh, Sanjay
    Sharma, Ritesh
    IEEE ACCESS, 2024, 12 : 75735 - 75760