Ensemble Kalman Inversion for upstream parameter estimation and indirect streamflow correction: A simulation study

被引:2
|
作者
Pensoneault, Andrew [1 ,2 ,3 ]
Krajewski, Witold F. [1 ,2 ]
Velasquez, Nicolas [1 ,2 ]
Zhu, Xueyu [3 ]
Mantilla, Ricardo [4 ]
机构
[1] Univ Iowa, Iowa Flood Ctr, Iowa City, IA 52242 USA
[2] Univ Iowa, IIHR Hydrosci & Engn, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Math, Iowa City, IA USA
[4] Univ Manitoba, Dept Civil Engn, Winnipeg, MB, Canada
关键词
Data assimilation; Ensemble Kalman Filter; Ensemble Kalman Inversion; Inverse problems; Parameter estimation; HYDROLOGICAL DATA ASSIMILATION; FILTER; FLOW; MODEL; STATE; RECESSION; SMOOTHER; SYSTEM;
D O I
10.1016/j.advwatres.2023.104545
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Data assimilation (DA) techniques such as the Ensemble Kalman filter (EnKF) and its extensions allow for realtime corrections of state-space models and model parameters based on an assumption of Gaussian error. The hydrological DA literature primarily documents applications of the EnKF to solve sequential state estimation problems. Recent advances in the DA literature demonstrate the potential of applying EnKF-based methods as efficient, derivative-free algorithms to solve various general Bayesian inverse problems, such as parameter estimation, while simultaneously providing Uncertainty Quantification (UQ). In this paper, the authors employ the Ensemble Kalman Inversion (EKI) algorithm to infer the distribution of a set of routing parameters. Through this correction, we improve streamflow at locations upstream of the gauged site in a virtual catchment setting. The algorithm enables learning spatially distributed routing parameters with observations available only at the outlet. The study reveals that this method sufficiently improves model performance throughout the basin. The performance of this method is demonstrated in a virtual catchment for three different model/data configurations. Favorable results, even with model misspecification, indicate that this method holds promise for operational application and more general hydrologic parameter estimation problems.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter
    ELSheikh, A. H.
    Pain, C. C.
    Fang, F.
    Gomes, J. L. M. A.
    Navon, I. M.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (04) : 877 - 897
  • [22] Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography
    Schoeniger, A.
    Nowak, W.
    Franssen, H-J Hendricks
    WATER RESOURCES RESEARCH, 2012, 48
  • [23] Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter
    Annan, JD
    Hargreaves, JC
    Edwards, NR
    Marsh, R
    OCEAN MODELLING, 2005, 8 (1-2) : 135 - 154
  • [24] Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    Moradkhani, H
    Sorooshian, S
    Gupta, HV
    Houser, PR
    ADVANCES IN WATER RESOURCES, 2005, 28 (02) : 135 - 147
  • [25] Modified Ensemble Kalman filter for reservoir parameter and state estimation in the presence of model uncertainty
    Akter, Farhana
    Imtiaz, Syed
    Zendehboudi, Sohrab
    Hossain, Kamal
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 199
  • [26] Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter
    A. H. ELSheikh
    C. C. Pain
    F. Fang
    J. L. M. A. Gomes
    I. M. Navon
    Stochastic Environmental Research and Risk Assessment, 2013, 27 : 877 - 897
  • [27] An adaptive sparse-grid iterative ensemble Kalman filter approach for parameter field estimation
    Webster, Clayton G.
    Zhang, Guannan
    Gunzburger, Max
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (04) : 798 - 817
  • [28] Parameter inversion estimation in photosynthetic models: Impact of different simulation methods
    Wang, H. B.
    Ma, M. G.
    Xie, Y. M.
    Wang, X. F.
    Wang, J.
    PHOTOSYNTHETICA, 2014, 52 (02) : 233 - 246
  • [29] An ensemble Kalman filter approach to parameter estimation for patient-specific cardiovascular flow modeling
    Canuto, Daniel
    Pantoja, Joe L.
    Han, Joyce
    Dutson, Erik P.
    Eldredge, Jeff D.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2020, 34 (04) : 521 - 544
  • [30] An ensemble Kalman filter approach to parameter estimation for patient-specific cardiovascular flow modeling
    Daniel Canuto
    Joe L. Pantoja
    Joyce Han
    Erik P. Dutson
    Jeff D. Eldredge
    Theoretical and Computational Fluid Dynamics, 2020, 34 : 521 - 544