Learning Topological Horseshoe via Deep Neural Networks

被引:1
|
作者
Yang, Xiao-Song [1 ,2 ]
Cheng, Junfeng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
来源
关键词
Poincare map; topological horseshoe; chaos; deep neural network;
D O I
10.1142/S021812742430009X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Deep Neural Networks (DNNs) have been successfully applied to investigations of numerical dynamics of finite-dimensional nonlinear systems such as ODEs instead of finding numerical solutions to ODEs via the traditional Runge-Kutta method and its variants. To show the advantages of DNNs, in this paper, we demonstrate that the DNNs are more efficient in finding topological horseshoes in chaotic dynamical systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Shortcut learning in deep neural networks
    Robert Geirhos
    Jörn-Henrik Jacobsen
    Claudio Michaelis
    Richard Zemel
    Wieland Brendel
    Matthias Bethge
    Felix A. Wichmann
    Nature Machine Intelligence, 2020, 2 : 665 - 673
  • [32] Fast learning in Deep Neural Networks
    Chandra, B.
    Sharma, Rajesh K.
    NEUROCOMPUTING, 2016, 171 : 1205 - 1215
  • [33] Deep associative learning for neural networks
    Liu, Jia
    Zhang, Wenhua
    Liu, Fang
    Xiao, Liang
    NEUROCOMPUTING, 2021, 443 (443) : 222 - 234
  • [34] Collaborative Learning for Deep Neural Networks
    Song, Guocong
    Chai, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [35] Big learning and deep neural networks
    Montavon, Grégoire
    Müller, Klaus-Robert
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7700 LECTURE NO : 419 - 420
  • [36] Multiplierless Neural Networks for Deep Learning
    Banduka, Maja Lutovac
    Lutovac, Miroslav
    2024 13TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING, MECO 2024, 2024, : 262 - 265
  • [37] Shortcut learning in deep neural networks
    Geirhos, Robert
    Jacobsen, Joern-Henrik
    Michaelis, Claudio
    Zemel, Richard
    Brendel, Wieland
    Bethge, Matthias
    Wichmann, Felix A.
    NATURE MACHINE INTELLIGENCE, 2020, 2 (11) : 665 - 673
  • [38] A topological deep learning framework for neural spike decoding
    Mitchell, Edward C.
    Story, Brittany
    Boothe, David
    Franaszczuk, Piotr J.
    Maroulas, Vasileios
    BIOPHYSICAL JOURNAL, 2024, 123 (17) : 2781 - 2789
  • [39] Temporal Spike Sequence Learning via Backpropagation for Deep Spiking Neural Networks
    Zhang, Wenrui
    Li, Peng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [40] Enhancing Offline Signature Verification via Transfer Learning and Deep Neural Networks
    S. Singh
    S. Chandra
    Agya Ram Verma
    Augmented Human Research, 2024, 9 (1)