Hermite-Hadamard-Type Inequalities for Coordinated Convex Functions Using Fuzzy Integrals

被引:2
|
作者
Latif, Muhammad Amer [1 ]
机构
[1] King Faisal Univ, Dept Basic Sci, Deanship Preparatory Year, Al Hufuf 31982, Al Hasa, Saudi Arabia
关键词
fuzzy measure; Sugeno integral; Hermite-Hadamard's inequality; Fubini's theorem; CHEBYSHEV TYPE INEQUALITIES; SUGENO INTEGRALS; RECTANGLE;
D O I
10.3390/math11112432
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, some estimates of third and fourth inequalities in Hermite-Hadamard-type inequalities for coordinated convex functions are proved using the non-additivity of the integrals and Fubini's theorem for fuzzy integrals. That is, the results are obtained in the fuzzy context and using the Lebesgue measure. Several examples are provided on how to evaluate these estimates in order to illustrate the obtained results.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [42] Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals
    Iscan, Imdat
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 355 - 366
  • [43] A study on Hermite-Hadamard-type inequalities via new fractional conformable integrals
    Set, Erhan
    Gozpinar, Abdurrahman
    Butt, Saad Ihsan
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (02)
  • [44] GENERALIZATIONS OF SOME HERMITE-HADAMARD-TYPE INEQUALITIES
    Fok, Houkei
    Vong, Seakweng
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (03): : 359 - 370
  • [45] Some new hermite-hadamard-type inequalities for geometric-arithmetically s-convex functions
    Nanjing Univ. Informat. Sci. and Technol., College of Mathematics and Statistics, Nanjing, China
    不详
    WSEAS Trans. Math., 1 (452-461):
  • [46] Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    Khan, Sundas
    Chu, Yuming
    OPEN MATHEMATICS, 2021, 19 (01): : 1081 - 1097
  • [47] Some fractional Hermite-Hadamard-type integral inequalities with s-(α, m)-convex functions and their applications
    Liu, R. N.
    Xu, Run
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01):
  • [48] FRACTIONAL HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Budak, Huseyin
    Tunc, Tuba
    Sarikaya, Mehmet Zeki
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 705 - 718
  • [49] Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives
    Ali, Muhammad Aamir
    Budak, Huseyin
    Abbas, Mujahid
    Chu, Yu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01):
  • [50] On Hermite-Hadamard-Type Inequalities for Functions Satisfying Second-Order Differential Inequalities
    Aldawish, Ibtisam
    Jleli, Mohamed
    Samet, Bessem
    AXIOMS, 2023, 12 (05)