An interpretable transformer network for the retinal disease classification using optical coherence tomography

被引:33
|
作者
He, Jingzhen [1 ]
Wang, Junxia [2 ]
Han, Zeyu [3 ]
Ma, Jun [4 ]
Wang, Chongjing [5 ]
Qi, Meng [2 ]
机构
[1] Shandong Univ, Dept Radiol, Qilu Hosp, Jinan 250012, Peoples R China
[2] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Peoples R China
[3] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[4] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 211189, Peoples R China
[5] China Acad Informat & Commun Technol, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
DIABETIC MACULAR EDEMA;
D O I
10.1038/s41598-023-30853-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Retinal illnesses such as age-related macular degeneration and diabetic macular edema will lead to irreversible blindness. With optical coherence tomography (OCT), doctors are able to see cross-sections of the retinal layers and provide patients with a diagnosis. Manual reading of OCT images is time-consuming, labor-intensive and even error-prone. Computer-aided diagnosis algorithms improve efficiency by automatically analyzing and diagnosing retinal OCT images. However, the accuracy and interpretability of these algorithms can be further improved through effective feature extraction, loss optimization and visualization analysis. In this paper, we propose an interpretable Swin-Poly Transformer network for performing automatically retinal OCT image classification. By shifting the window partition, the Swin-Poly Transformer constructs connections between neighboring non-overlapping windows in the previous layer and thus has the flexibility to model multi-scale features. Besides, the Swin-Poly Transformer modifies the importance of polynomial bases to refine cross entropy for better retinal OCT image classification. In addition, the proposed method also provides confidence score maps, assisting medical practitioners to understand the models' decision-making process. Experiments in OCT2017 and OCT-C8 reveal that the proposed method outperforms both the convolutional neural network approach and ViT, with an accuracy of 99.80% and an AUC of 99.99%.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Measurment of retinal perfusion using optical coherence tomography
    Glucksberg, M
    Wu, FI
    Walsh, JT
    FASEB JOURNAL, 2003, 17 (04): : A125 - A126
  • [32] Deep Residual Network for Diagnosis of Retinal Diseases Using Optical Coherence Tomography Images
    Sohaib Asif
    Kamran Amjad
    Interdisciplinary Sciences: Computational Life Sciences, 2022, 14 : 906 - 916
  • [33] Reproducibility of retinal mapping using optical coherence tomography
    Massin, P
    Vicaut, E
    Haouchine, B
    Erginay, A
    Paques, M
    Gaudric, A
    ARCHIVES OF OPHTHALMOLOGY, 2001, 119 (08) : 1135 - 1142
  • [34] Deep Residual Network for Diagnosis of Retinal Diseases Using Optical Coherence Tomography Images
    Asif, Sohaib
    Amjad, Kamran
    Qurrat-ul-Ain
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (04) : 906 - 916
  • [35] Classification of Retinal Diseases in Optical Coherence Tomography Images Using Artificial Intelligence and Firefly Algorithm
    Ozdas, Mehmet Batuhan
    Uysal, Fatih
    Hardalac, Firat
    DIAGNOSTICS, 2023, 13 (03)
  • [36] Optical Coherence Tomography Analysis of Retinal Layers in Celiac Disease
    Vitiello, Livio
    De Bernardo, Maddalena
    Erra, Luca
    Della Rocca, Federico
    Rosa, Nicola
    Ciacci, Carolina
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (16)
  • [37] Is retinal optical coherence tomography an imaging biomarker for Parkinson disease?
    Ascaso, Francisco
    Jimenez, Beatriz
    Lopez del Val, Javier
    Pinilla Lozano, Isabel
    Perez-Garcia, Diana
    Ibanez-Alperte, Juan
    Cristobal, Jose
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)
  • [38] Optical coherence tomography to detect and manage retinal disease and glaucoma
    Jaffe, GJ
    Caprioli, J
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2004, 137 (01) : 156 - 169
  • [39] Validation of Optical Coherence Tomography Retinal Segmentation in Neurodegenerative Disease
    Wong, Bryan M.
    Cheng, Richard W.
    Mandelcorn, Efrem D.
    Margolin, Edward
    El-Defrawy, Sherif
    Yan, Peng
    Santiago, Anna T.
    Leontieva, Elena
    Lou, Wendy
    Hatch, Wendy
    Hudso, Christopher
    Bartha, Robert
    Black, Sandra E.
    Borrie, Michael
    Corbett, Dale
    Finger, Elizabeth
    Freedman, Morris
    Greenberg, Barry
    Grimes, David A.
    Hegele, Robert A.
    Hudson, Christopher
    Lang, Anthony E.
    Masellis, Mario
    McIlroy, William E.
    McLaughlin, Paula M.
    Montero-Odasso, Manuel
    Munoz, David G.
    Munoz, Douglas P.
    Orange, J. B.
    Strong, Michael J.
    Strother, Stephen C.
    Swartz, Richard H.
    Symons, Sean
    Tartaglia, Maria Carmela
    Troyer, Angela
    Zinman, Lorne
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2019, 8 (05):
  • [40] Correlation of Outer Retinal Degeneration and Choriocapillaris Loss in Stargardt Disease Using En Face Optical Coherence Tomography and Optical Coherence Tomography Angiography
    Alabduljalil, Talal
    Patel, Rachel C.
    Alqahtani, Abdullah A.
    Gao, Simon S.
    Gale, Michael J.
    Zhang, Miao
    Jia, Yali
    Huang, David
    Chiang, Pei-Wen
    Chen, Rui
    Wang, Jun
    Weleber, Richard G.
    Pennesi, Mark E.
    Yang, Paul
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 202 : 79 - 90