Local Dirac's condition;
2-factor;
Barrier;
THEOREMS;
D O I:
10.1016/j.disc.2023.113436
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For a vertex u in a graph and a given positive integer k, let M-k(u) denote the set of vertices whose distance from u is at most k. A graph satisfies the local Dirac's condition if the degree of each vertex u in it is at least |M-2(u)|/2 . Asratian et al. disproved that a connected graph G on at least three vertices is Hamiltonian if G satisfies the local Dirac's condition. In this paper, we prove that if a connected graph G on at least three vertices satisfies the local Dirac's condition, then G contains a 2-factor. Our result is best possible. (c) 2023 Elsevier B.V. All rights reserved.
机构:
Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
Fac Cent China Normal Univ, Wuhan, Hubei, Peoples R ChinaGeorgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
Chen, Guantao
Shan, Songling
论文数: 0引用数: 0
h-index: 0
机构:
Vanderbilt Univ, Dept Math, Nashville, TN 37240 USAGeorgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
机构:
Sobolev Inst Math, Novosibirsk 630090, Russia
Univ Illinois, Dept Math, Urbana, IL 61801 USAColl William & Mary, Dept Math, Williamsburg, VA 23185 USA
Kostochka, Alexandr V.
Yu, Gexin
论文数: 0引用数: 0
h-index: 0
机构:
Coll William & Mary, Dept Math, Williamsburg, VA 23185 USAColl William & Mary, Dept Math, Williamsburg, VA 23185 USA