Local Dirac's condition on the existence of 2-factor

被引:0
|
作者
Chen, Xiaodong [1 ]
Chen, Guantao [2 ]
机构
[1] Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Local Dirac's condition; 2-factor; Barrier; THEOREMS;
D O I
10.1016/j.disc.2023.113436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a vertex u in a graph and a given positive integer k, let M-k(u) denote the set of vertices whose distance from u is at most k. A graph satisfies the local Dirac's condition if the degree of each vertex u in it is at least |M-2(u)|/2 . Asratian et al. disproved that a connected graph G on at least three vertices is Hamiltonian if G satisfies the local Dirac's condition. In this paper, we prove that if a connected graph G on at least three vertices satisfies the local Dirac's condition, then G contains a 2-factor. Our result is best possible. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条