Local Dirac's condition on the existence of 2-factor

被引:0
|
作者
Chen, Xiaodong [1 ]
Chen, Guantao [2 ]
机构
[1] Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Local Dirac's condition; 2-factor; Barrier; THEOREMS;
D O I
10.1016/j.disc.2023.113436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a vertex u in a graph and a given positive integer k, let M-k(u) denote the set of vertices whose distance from u is at most k. A graph satisfies the local Dirac's condition if the degree of each vertex u in it is at least |M-2(u)|/2 . Asratian et al. disproved that a connected graph G on at least three vertices is Hamiltonian if G satisfies the local Dirac's condition. In this paper, we prove that if a connected graph G on at least three vertices satisfies the local Dirac's condition, then G contains a 2-factor. Our result is best possible. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] THE EXISTENCE OF A 2-FACTOR IN A GRAPH SATISFYING THE LOCAL CHVATAL-ERDOS CONDITION
    Chen, Guantao
    Saito, Akira
    Shan, Songling
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1788 - 1799
  • [2] A sufficient condition for the existence of an anti-directed 2-factor in a directed graph
    Diwan, Ajit A.
    Frye, Josh B.
    Plantholt, Michael J.
    Tipnis, Shailesh K.
    DISCRETE MATHEMATICS, 2011, 311 (21) : 2556 - 2562
  • [3] Forbidden Subgraphs and the Existence of a 2-Factor
    Aldred, R. E. L.
    Fujisawa, Jun
    Saito, Akira
    JOURNAL OF GRAPH THEORY, 2010, 64 (03) : 250 - 266
  • [4] PURPOSE AND MEANING - A 2-FACTOR THEORY OF EXISTENCE
    SHAPIRO, SB
    PSYCHOLOGICAL REPORTS, 1988, 63 (01) : 287 - 293
  • [5] Pairs and triples of forbidden subgraphs and the existence of a 2-factor
    Aldred, R. E. L.
    Fujisawa, Jun
    Saito, Akira
    JOURNAL OF GRAPH THEORY, 2019, 90 (01) : 61 - 82
  • [6] Two forbidden subgraphs and the existence of a 2-factor in graphs
    Aldred, R. E. L.
    Fujisawa, Jun
    Saito, Akira
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2009, 44 : 235 - 246
  • [7] Best Monotone Degree Condition for the Hamiltonicity of Graphs with a 2-Factor
    D. Bauer
    A. Nevo
    E. Schmeichel
    Graphs and Combinatorics, 2017, 33 : 1231 - 1248
  • [8] Forbidden Restrictions and the Existence of P=2-Factor and P=3-Factor
    Wu, Jianzhang
    Yuan, Jiabin
    Baskonus, Haci Mehmet
    Gao, Wei
    JOURNAL OF FUNCTION SPACES, 2023, 2023
  • [9] On a 2-factor with a specified edge in a graph satisfying the Ore condition
    Kaneko, A
    Yoshimoto, K
    DISCRETE MATHEMATICS, 2002, 257 (2-3) : 445 - 461
  • [10] Best Monotone Degree Condition for the Hamiltonicity of Graphs with a 2-Factor
    Bauer, D.
    Nevo, A.
    Schmeichel, E.
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1231 - 1248