Spin-transfer and spin-orbit torques in the Landau-Lifshitz-Gilbert equation

被引:5
|
作者
Meo, Andrea [1 ,2 ]
Cronshaw, Carenza E. [1 ]
Jenkins, Sarah [1 ,3 ]
Lees, Amelia [4 ]
Evans, Richard F. L. [1 ]
机构
[1] Univ York, Dept Phys, York YO10 5DD, England
[2] Mahasarakham Univ, Dept Phys, Maha Sarakham 44150, Thailand
[3] Johannes Gutenberg Univ Mainz, Inst Phys, TWIST Grp, D-55128 Mainz, Germany
[4] BT Appl Res, Adastral Pk Martlesham, Suffolk IP5 3RE, England
关键词
micromagnetics; atomistic spin models; spin-transfer torque; spin-orbit torque;
D O I
10.1088/1361-648X/ac9c80
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Dynamic simulations of spin-transfer and spin-orbit torques are increasingly important for a wide range of spintronic devices including magnetic random access memory, spin-torque nano-oscillators and electrical switching of antiferromagnets. Here we present a computationally efficient method for the implementation of spin-transfer and spin-orbit torques within the Landau-Lifshitz-Gilbert equation used in micromagnetic and atomistic simulations. We consolidate and simplify the varying terminology of different kinds of torques into a physical action and physical origin that clearly shows the common action of spin torques while separating their different physical origins. Our formalism introduces the spin torque as an effective magnetic field, greatly simplifying the numerical implementation and aiding the interpretation of results. The strength of the effective spin torque field unifies the action of the spin torque and subsumes the details of experimental effects such as interface resistance and spin Hall angle into a simple transferable number between numerical simulations. We present a series of numerical tests demonstrating the mechanics of generalised spin torques in a range of spintronic devices. This revised approach to modelling spin-torque effects in numerical simulations enables faster simulations and a more direct way of interpreting the results, and thus it is also suitable to be used in direct comparisons with experimental measurements or in a modelling tool that takes experimental values as input.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Correlation effects in the stochastic Landau-Lifshitz-Gilbert equation
    Bose, Thomas
    Trimper, Steffen
    [J]. PHYSICAL REVIEW B, 2010, 81 (10):
  • [32] Error estimates for Landau-Lifshitz-Gilbert equation with magnetostriction
    Banas, L'ubomir
    Slodicka, Marian
    [J]. APPLIED NUMERICAL MATHEMATICS, 2006, 56 (08) : 1019 - 1039
  • [33] An iterative approximation scheme for the Landau-Lifshitz-Gilbert equation
    Cimrák, I
    Slodicka, M
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 169 (01) : 17 - 32
  • [34] Vanishing Gilbert damping limit problem of Landau-Lifshitz-Gilbert equation
    Song, Wenjing
    Yang, Ganshan
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (08):
  • [35] Ginzburg-Landau Vortices Driven by the Landau-Lifshitz-Gilbert Equation
    Kurzke, Matthias
    Melcher, Christof
    Moser, Roger
    Spirn, Daniel
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (03) : 843 - 888
  • [36] Very Regular Solution to Landau-Lifshitz-Gilbert System with Spin-polarized Transport
    Chen, Bo
    Wang, Youde
    [J]. FRONTIERS OF MATHEMATICS, 2023, 18 (04): : 751 - 795
  • [37] Strong solvability of regularized stochastic Landau-Lifshitz-Gilbert equation
    Chugreeva, Olga
    Melcher, Christof
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2018, 83 (02) : 261 - 282
  • [38] HOMOGENIZATION OF THE LANDAU-LIFSHITZ-GILBERT EQUATION IN A CONTRASTED COMPOSITE MEDIUM
    Choquet, Catherine
    Moumni, Mohammed
    Tilioua, Mouhcine
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (01): : 35 - 57
  • [39] Landau-Lifshitz-Gilbert equation with symmetric coefficients of the dissipative function
    Salazar, M.
    Perez Alcazar, G. A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 424 : 312 - 316
  • [40] Roadmap of Spin-Orbit Torques
    Shao, Qiming
    Li, Peng
    Liu, Luqiao
    Yang, Hyunsoo
    Fukami, Shunsuke
    Razavi, Armin
    Wu, Hao
    Wang, Kang
    Freimuth, Frank
    Mokrousov, Yuriy
    Stiles, Mark D.
    Emori, Satoru
    Hoffmann, Axel
    Akerman, Johan
    Roy, Kaushik
    Wang, Jian-Ping
    Yang, See-Hun
    Garello, Kevin
    Zhang, Wei
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (07)