Local Holder regularity for the general non-homogeneous parabolic equations

被引:0
|
作者
Yao, Fengping [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Holder; Regularity; Quasilinear; Non-homogeneous; Logarithmic; p-Laplacian; Parabolic; HIGHER INTEGRABILITY; FULL C-1; C-ALPHA-REGULARITY; VARIATIONAL INTEGRALS; WEAK SOLUTIONS; GRADIENT; SYSTEMS; MINIMIZERS; FUNCTIONALS;
D O I
10.1016/j.jmaa.2022.126746
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain the local Holder regularity estimates of the gradient of weak solutions for the following general non-homogeneous parabolic equations with the logarithmic term in divergence form u(t) - div ((ADu center dot Du)(p-2/2) ln (e + (ADu center dot Du)(1/2)) ADu) = div (|f|(p-2) ln (e + |f|)) in Omega(T), where Omega(T) := Omega x (0, T) with T > 0 and Omega is an open bounded domain in R-n, under some proper conditions on A and f. We would like to point out that our result in the present work is a generalized version of the known results for the classical parabolic p-Laplacian equation without the logarithmic term. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Local controllability to trajectories for non-homogeneous incompressible Navier-Stokes equations
    Badra, Mehdi
    Ervedoza, Sylvain
    Guerrero, Sergio
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02): : 529 - 574
  • [42] MULTIPARAMETERED NON-HOMOGENEOUS NON-LINEAR EQUATIONS
    YERION, KA
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1982, 12 (02) : 257 - 264
  • [43] ON THE CAMPANATO AND HOLDER REGULARITY OF LOCAL AND NONLOCAL STOCHASTIC DIFFUSION EQUATIONS
    Lv, Guangying
    Gao, Hongjun
    Wei, Jinlong
    Wu, Jiang-Lun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 1244 - 1266
  • [44] Holder gradient estimates for parabolic homogeneous p-Laplacian equations
    Jin, Tianling
    Silvestre, Luis
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (01): : 63 - 87
  • [45] Regularity theory for general stable operators: Parabolic equations
    Fernandez-Real, Xavier
    Ros-Oton, Xavier
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (10) : 4165 - 4221
  • [46] Optimal regularity estimates for general nonlinear parabolic equations
    Sun-Sig Byun
    Dian K. Palagachev
    Pilsoo Shin
    manuscripta mathematica, 2020, 162 : 67 - 98
  • [47] Optimal regularity estimates for general nonlinear parabolic equations
    Byun, Sun-Sig
    Palagachev, Dian K.
    Shin, Pilsoo
    MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 67 - 98
  • [48] Optimal solutions for homogeneous and non-homogeneous equations arising in physics
    Sikander, Waseem
    Khan, Umar
    Ahmed, Naveed
    Mohyud-Din, Syed Tauseef
    RESULTS IN PHYSICS, 2017, 7 : 216 - 224
  • [49] Higher Regularity of Holder Continuous Solutions of Parabolic Equations with Singular Drift Velocities
    Friedlander, Susan
    Vicol, Vlad
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (02) : 255 - 266
  • [50] On generalized logistic equations with a non-homogeneous differentialoperator
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2014, 29 (02): : 190 - 207