Optimal regularity estimates for general nonlinear parabolic equations

被引:4
|
作者
Byun, Sun-Sig [1 ,2 ]
Palagachev, Dian K. [3 ]
Shin, Pilsoo [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Politecn Bari, Dipartimento Meccan Matemat & Management, Via Edoardo Orabona 4, I-70125 Bari, Italy
关键词
GRADIENT; SYSTEMS;
D O I
10.1007/s00229-019-01127-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a global Calderon-Zygmund theory for a quasilinear divergence form parabolic operator with discontinuous entries which exhibit nonlinearities both with respect to the weak solution u and its spatial gradient Du in a nonsmooth domain. The nonlinearity behaves as the parabolic p-Laplacian in Du, its discontinuity with respect to the independent variables is measured in terms of small-BMO, while only Holder continuity is required with respect to u and the underlying domain is assumed to be d-Reifenberg flat. We introduce and employ essentially a new concept of the intrinsic parabolic maximal function in order to overcome the main difficulties stemming from both the parabolic scaling deficiency and the nonlinearity of u-variable of such a very general parabolic operator, obtaining optimal Lq-estimates for the spatial gradient under a minimal geometric condition on the domain.
引用
收藏
页码:67 / 98
页数:32
相关论文
共 50 条
  • [1] Optimal regularity estimates for general nonlinear parabolic equations
    Sun-Sig Byun
    Dian K. Palagachev
    Pilsoo Shin
    [J]. manuscripta mathematica, 2020, 162 : 67 - 98
  • [2] Optimal regularity estimates for parabolic p-harmonic equations
    Yao, Fengping
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (02) : 576 - 590
  • [3] Sharp regularity estimates for second order fully nonlinear parabolic equations
    João Vitor da Silva
    Eduardo V. Teixeira
    [J]. Mathematische Annalen, 2017, 369 : 1623 - 1648
  • [4] Sharp regularity estimates for second order fully nonlinear parabolic equations
    Silva, Joao Vitor da
    Teixeira, Eduardo V.
    [J]. MATHEMATISCHE ANNALEN, 2017, 369 (3-4) : 1623 - 1648
  • [5] Global Gradient Estimates for a General Type of Nonlinear Parabolic Equations
    Cecilia Cavaterra
    Serena Dipierro
    Zu Gao
    Enrico Valdinoci
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [6] Global Gradient Estimates for a General Type of Nonlinear Parabolic Equations
    Cavaterra, Cecilia
    Dipierro, Serena
    Gao, Zu
    Valdinoci, Enrico
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [7] Regularity for doubly nonlinear parabolic equations
    A. V. Ivanov
    [J]. Journal of Mathematical Sciences, 1997, 83 (1) : 22 - 37
  • [8] Gradient regularity for nonlinear parabolic equations
    Kuusi, Tuomo
    Mingione, Giuseppe
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2013, 12 (04) : 755 - 822
  • [9] REGULARITY ESTIMATES IN BESOV SPACES FOR INITIAL-VALUE PROBLEMS OF GENERAL PARABOLIC EQUATIONS
    Xu, Ming
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [10] Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains
    Byun, Sun-Sig
    Ok, Jihoon
    Ryu, Seungjin
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (11) : 4290 - 4326