Dosimetric delivery validation of dynamically collimated pencil beam scanning proton therapy

被引:4
|
作者
Nelson, Nicholas P. [1 ]
Culberson, Wesley S. [1 ]
Hyer, Daniel E. [2 ]
Geoghegan, Theodore J. [2 ]
Patwardhan, Kaustubh A. [2 ]
Smith, Blake R. [2 ]
Flynn, Ryan T. [2 ]
Yu, Jen [3 ]
Gutierrez, Alonso N. [3 ]
Hill, Patrick M. [4 ]
机构
[1] Univ Wisconsin Madison, Sch Med & Publ Hlth, Dept Med Phys, 1111 Highland Ave, Madison, WI 53705 USA
[2] Univ Iowa Hosp & Clin, Dept Radiat Oncol, 200 Hawkins Dr, Iowa City, IA 52242 USA
[3] Baptist Hlth South Florida, Miami Canc Inst, Dept Radiat Oncol, 8900 N Kendall Dr, Miami, FL 33176 USA
[4] Univ Wisconsin Madison, Sch Med & Publ Hlth, Dept Human Oncol, 600 Highland Ave, Madison, WI 53792 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2023年 / 68卷 / 05期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
proton therapy; collimation; Monte Carlo; dosimetry; IONIZATION-CHAMBER ARRAY; BRAIN-TUMORS; SPOT SIZE; QUALITY; SYSTEM; IMPACT;
D O I
10.1088/1361-6560/acb6cd
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Pencil beam scanning (PBS) proton therapy target dose conformity can be improved with energy layer-specific collimation. One such collimator is the dynamic collimation system (DCS), which consists of four nickel trimmer blades that intercept the scanning beam as it approaches the lateral extent of the target. While the dosimetric benefits of the DCS have been demonstrated through computational treatment planning studies, there has yet to be experimental verification of these benefits for composite multi-energy layer fields. The objective of this work is to dosimetrically characterize and experimentally validate the delivery of dynamically collimated proton therapy with the DCS equipped to a clinical PBS system. Approach. Optimized single field, uniform dose treatment plans for 3 x 3 x 3 cm(3) target volumes were generated using Monte Carlo dose calculations with depths ranging from 5 to 15 cm, trimmer-to-surface distances ranging from 5 to 18.15 cm, with and without a 4 cm thick polyethylene range shifter. Treatment plans were then delivered to a water phantom using a prototype DCS and an IBA dedicated nozzle system and measured with a Zebra multilayer ionization chamber, a MatriXX PT ionization chamber array, and Gafchromic (TM) EBT3 film. Main results. For measurements made within the SOBPs, average 2D gamma pass rates exceeded 98.5% for the MatriXX PT and 96.5% for film at the 2%/2 mm criterion across all measured uncollimated and collimated plans, respectively. For verification of the penumbra width reduction with collimation, film agreed with Monte Carlo with differences within 0.3 mm on average compared to 0.9 mm for the MatriXX PT. Significance. We have experimentally verified the delivery of DCS-collimated fields using a clinical PBS system and commonly available dosimeters and have also identified potential weaknesses for dosimeters subject to steep dose gradients.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Determination of surface dose in pencil beam scanning proton therapy
    Kern, A.
    Baeumer, C.
    Kroeninger, K.
    Mertens, L.
    Timmermann, B.
    Walbersloh, J.
    Wulff, J.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S483 - S483
  • [42] Pencil beam scanning proton therapy for pediatric intracranial ependymoma
    Ares, Carmen
    Albertini, Francesca
    Frei-Welte, Martina
    Bolsi, Alessandra
    Grotzer, Michael A.
    Goitein, Gudrun
    Weber, Damien C.
    JOURNAL OF NEURO-ONCOLOGY, 2016, 128 (01) : 137 - 145
  • [43] Proton Pencil Beam Scanning for Rectal Cancer Radiation Therapy
    Kiely, J. P. Blanco
    White, B. M.
    Plastaras, J. P.
    Ben-Josef, E.
    Varman, C.
    Tang, S.
    Tochner, Z. A.
    Metz, J. M.
    Both, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 93 (03): : E159 - E159
  • [44] Pencil beam scanning proton therapy for pediatric intracranial ependymoma
    Carmen Ares
    Francesca Albertini
    Martina Frei-Welte
    Alessandra Bolsi
    Michael A. Grotzer
    Gudrun Goitein
    Damien C. Weber
    Journal of Neuro-Oncology, 2016, 128 : 137 - 145
  • [45] Pencil Beam Proton Flash Therapy, the challenge of scanning.
    Pin, A.
    Hotoiu, L.
    Deffet, S.
    Sterpin, E.
    Labarbe, R.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S747 - S748
  • [46] Clinical Implementation of Pencil Beam Scanning (PBS) Proton Therapy
    Dong, Lei
    Dong, L.
    Zhu, X.
    Pankuch, M.
    Dong, L.
    MEDICAL PHYSICS, 2017, 44 (06) : 3031 - 3032
  • [47] Pencil Beam Scanning Proton Therapy in the Treatment of Rectal Cancer
    Dionisi, F.
    Batra, S.
    Kirk, M.
    Both, S.
    Vennarini, S.
    McDonough, J.
    Metz, J. M.
    Plastaras, J. P.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2013, 87 (02): : S341 - S342
  • [48] Determination of surface dose in pencil beam scanning proton therapy
    Kern, A.
    Baeumer, C.
    Kroeninger, K.
    Mertens, L.
    Timmermann, B.
    Walbersloh, J.
    Wulff, J.
    MEDICAL PHYSICS, 2020, 47 (05) : 2277 - 2288
  • [49] Clinical Validation of Proton Pencil Beam Scanning on an Anthropomorphic Lung Phantom
    Wang, P.
    Tang, S.
    Cummings, D.
    Lee, A. K.
    Chang, C.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (02): : E736 - E736
  • [50] Dose Calibration and Integral Depth Dose Correction of An Analytical Dose Calculation Algorithm for Collimated Pencil Beam Scanning Proton Therapy
    Bennett, L.
    Erhart, K.
    Nelson, N.
    Yu, J.
    Gutierrez, A.
    Rana, S.
    Smith, B.
    Hill, P.
    Hyer, D.
    Geoghegan, T.
    Patwardhan, K.
    Culberson, W.
    Flynn, R.
    MEDICAL PHYSICS, 2022, 49 (06) : E857 - E857