Human colonic catabolism of dietary flavan-3-ol bioactives

被引:21
|
作者
Di Pede, Giuseppe [1 ]
Mena, Pedro [1 ,2 ]
Bresciani, Letizia [1 ]
Almutairi, Tahani M. [3 ]
Del Rio, Daniele [1 ,2 ]
Clifford, Michael N. [4 ,5 ]
Crozier, Alan [3 ,6 ]
机构
[1] Univ Parma, Dept Food & Drug, Human Nutr Unit, I-43125 Parma, Italy
[2] Univ Parma, Microbiome Res Hub, I-43124 Parma, Italy
[3] King Saud Univ, Dept Chem, Riyadh 11363, Saudi Arabia
[4] Univ Surrey, Fac Hlth & Med Sci, Sch Biosci & Med, Guildford GU27XH, Surrey, England
[5] Monash Univ, Fac Med Nursing & Hlth Sci, Sch Clin Sci Monash Hlth, Dept Nutr Dietet & Food, Notting Hill, Vic 3168, Australia
[6] Univ Glasgow, Sch Med Dent & Nursing, Glasgow G128QQ, Scotland
关键词
Flavan-3-ols; Colonic catabolic and phase II metabolism; 2-14C](-)-Epicatechin; Procyanidins; Theaflavins; GREEN TEA FLAVAN-3-OLS; URINARY-EXCRETION; RED WINE; B2 EPICATECHIN-(4-BETA-8)-EPICATECHIN; ANTIADHESIVE ACTIVITY; PHENOLIC METABOLITES; PROCYANIDIN B2; HIPPURIC-ACID; A-TYPE; ABSORPTION;
D O I
10.1016/j.mam.2022.101107
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the fate of ingested polyphenols is crucial in elucidating the molecular mechanisms underlying the beneficial effects of a fruit and vegetable-based diet. This review focuses on the colon microbiota-mediated transformation of the flavan-3-ols and the structurally related procyanidins found in dietary plant foods and beverages, plus the flavan-3-ol-derived theaflavins of black tea, and the post-absorption phase II metabolism of the gut microbiota catabolites. Despite significant advances in the last decade major analytical challenges remain. Strategies to address them are presented.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Percutaneous absorption of flavan-3-ol conjugates from plant procyanidins
    Alonso, C
    Ramón, E
    Lozano, C
    Parra, JL
    Torres, JL
    Coderch, L
    DRUGS UNDER EXPERIMENTAL AND CLINICAL RESEARCH, 2004, 30 (01) : 1 - 10
  • [22] Steroidal saponins and flavan-3-ol glycosides from Dioscorea villosa
    Sautour, M
    Miyamoto, T
    Lacaille-Dubois, MA
    BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 2006, 34 (01) : 60 - 63
  • [23] A FLAVAN-3-OL GLYCOSIDE FROM BARK OF PLUMERIA-RUBRA
    KARDONO, LBS
    TSAURI, S
    PADMAWINATA, K
    KINGHORN, AD
    PHYTOCHEMISTRY, 1990, 29 (09) : 2995 - 2997
  • [24] Antioxidative Flavan-3-ol Dimers from the Leaves of Camellia fangchengensis
    Meng, Xiu-Hua
    Liu, Chang
    Fan, Rong
    Zhu, Li-Fang
    Yang, Shi-Xiong
    Zhu, Hong-Tao
    Wang, Dong
    Yang, Chong-Ren
    Zhang, Ying-Jun
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (01) : 247 - 254
  • [25] Antioxidant benzoylated flavan-3-ol glycoside from Celastrus orbiculatus
    Hwang, BY
    Kim, HS
    Lee, JH
    Hong, YS
    Ro, JS
    Lee, KS
    Lee, JJ
    JOURNAL OF NATURAL PRODUCTS, 2001, 64 (01): : 82 - 84
  • [26] Tea is the major source of flavan-3-ol and flavonol in the US diet
    Song, Won O.
    Chun, Ock K.
    JOURNAL OF NUTRITION, 2008, 138 (08): : 1543 - 1547
  • [27] A new flavan-3-ol from Artocarpus nitidus subsp lingnanensis
    Ti, Hui-Hui
    Lin, Li-Dong
    Ding, Wen-Bing
    Wei, Xiao-Yi
    JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH, 2012, 14 (06) : 555 - 558
  • [28] Tyrosinase catalysed biphenyl construction from flavan-3-ol substrates
    van Rensburg, WJ
    Ferreira, D
    Malan, E
    Steenkamp, JA
    PHYTOCHEMISTRY, 2000, 53 (02) : 285 - 292
  • [29] Potential cardiovascular system-protective effects of flavan-3-ol
    Zeng, Qiao-Hui
    Zhang, Xue-Wu
    Jiang, Jian-Guo
    MOLECULAR NUTRITION & FOOD RESEARCH, 2013, 57 (10) : 1693 - 1694
  • [30] A bioactive flavan-3-ol from the stem bark of Neocarya macrophylla
    Yusuf, A. J.
    Abdullahi, M., I
    Musa, A. M.
    Haruna, A. K.
    Mzozoyana, V
    Biambo, A. A.
    Abubakar, H.
    SCIENTIFIC AFRICAN, 2020, 7