Electrocatalytic Urea Synthesis via C-N Coupling from CO2 and Nitrogenous Species

被引:34
|
作者
Wang, Yujie [1 ]
Chen, Dawei [1 ]
Chen, Chen [1 ]
Wang, Shuangyin [1 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Adv Catalyt Engn Res Ctr,Minist Educ, Changsha 410082, Hunan, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 中国博士后科学基金;
关键词
REDUCTION; AMMONIA;
D O I
10.1021/acs.accounts.3c00633
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Industrial urea synthesis consists of the Haber-Bosch process to produce ammonia and the subsequent Bosch-Meiser process to produce urea. Compared to the conventional energy-intensive urea synthetic protocol, electrocatalytic C-N coupling from CO2 and nitrogenous species emerges as a promising alternative to construct a C-N bond under ambient conditions and to realize the direct synthesis of high-value urea products via skipping the intermediate step of ammonia production. The main challenges for electrocatalytic C-N coupling lie in the intrinsic inertness of molecules and the competition with parallel side reactions. In this Account, we give an overview of our recent progress toward electrocatalytic C-N coupling from CO2 and nitrogenous species toward urea synthesis. To begin, we present the direct transformation of dinitrogen (N-2) to the C-N bond by coelectrolysis, verifying the feasibility of direct urea synthesis from N-2 and CO2 under ambient conditions. In contrast to the highly endothermic step of proton coupling in conventional N-2 reduction, the N-2 activation and construction of the C-N bond arise from a thermodynamic spontaneous reaction between CO (derived from CO2 reduction) and *N=N* (the asterisks represent the adsorption sites), and the crucial *NCON* species mediates the interconversion of N-2, CO2, and urea. Based on theoretical guidance, the effect of N-2 adsorption configurations on C-N coupling is investigated on the model catalysts with defined active site structure, revealing that the side-on adsorption rather than the end-on one favors C-N coupling and urea synthesis. Electrocatalytic C-N coupling of CO2 and nitrate (NO3-) is also an effective pathway to achieve direct urea synthesis. We summarize our progress in the C-N coupling of CO2 and NO3-, from the aspects of modulating intermediate species adsorption and reaction paths, monitoring irreversible and reversible reconstruction of active sites, and precisely constructing active sites to match activities and to boost the electrocatalytic urea synthesis. In each case, in situ electrochemical technologies and density functional theory (DFT) calculations are carried out to unveil the microscopic mechanisms for the promotion of C-N coupling and the enhancement of urea synthesis activity. In the last section, we put forward the limitations, challenges, and perspectives in these two coupling systems for further development of electrocatalytic urea synthesis.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 50 条
  • [21] Revealing electrocatalytic C-N coupling for urea synthesis with metal-free electrocatalyst
    Cao, Yongyong
    Meng, Yuxiao
    An, Runzhi
    Zou, Xuhui
    Huang, Hongjie
    Zhong, Weichan
    Shen, Zhangfeng
    Xia, Qineng
    Li, Xi
    Wang, Yangang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 641 : 990 - 999
  • [22] Electrocatalytic construction of the C-N bond from the derivates of CO2 and N2
    Huang, Yanmei
    Wang, Yuting
    Wu, Yongmeng
    Yu, Yifu
    Zhang, Bin
    SCIENCE CHINA-CHEMISTRY, 2022, 65 (02) : 204 - 206
  • [23] Electrocatalytic construction of the C-N bond from the derivates of CO2 and N2
    Yanmei Huang
    Yuting Wang
    Yongmeng Wu
    Yifu Yu
    Bin Zhang
    Science China Chemistry, 2022, 65 : 204 - 206
  • [24] Electrocatalytic Synthesis of Organonitrogen Compounds via C-N Coupling from NOx and Carbon Source
    Zhou, Yiyang
    Ding, Chunmei
    Li, Can
    CHEMCATCHEM, 2024, 16 (23)
  • [25] Efficient C-N coupling in the direct synthesis of urea from CO2 and N2 by amorphous SbxBi1-xOy clusters
    Chen, Xiangyu
    Lv, Shuning
    Kang, Jianxin
    Wang, Zhongchang
    Guo, Tianqi
    Wang, Yu
    Teobaldi, Gilberto
    Liu, Li-Min
    Guo, Lin
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (39)
  • [26] Advances in electrocatalytic urea synthesis: Detection methods, C-N coupling mechanisms, and catalyst design
    Cai, Jian
    Wang, Zixuan
    Zheng, Xuan
    Hao, Jiace
    Bao, Kanglin
    Zhou, Ying
    Pan, Xiaodan
    Zhu, Han
    NANO RESEARCH, 2025, 18 (03)
  • [27] Oxygen Vacancy-Mediated Selective C-N Coupling toward Electrocatalytic Urea Synthesis
    Wei, Xiaoxiao
    Wen, Xiaojian
    Liu, Yingying
    Chen, Chen
    Xie, Chao
    Wang, Dongdong
    Qiu, Mengyi
    He, Nihan
    Zhou, Peng
    Chen, Wei
    Cheng, Jun
    Lin, Hongzhen
    Jia, Jianfeng
    Fu, Xian-Zhu
    Wang, Shuangyin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (26) : 11530 - 11535
  • [28] Electron Deficiency is More Important than Conductivity in C-N Coupling for Electrocatalytic Urea Synthesis
    Wang, Yujie
    Zhu, Xiaorong
    An, Qizheng
    Zhang, Xiaoran
    Wei, Xiaoxiao
    Chen, Chen
    Li, Han
    Chen, Dawei
    Zhou, Yangyang
    Liu, Qinghua
    Shao, Huaiyu
    Wang, Shuangyin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (49)
  • [29] Recent progress in electrocatalytic C-N coupling of CO2 and inorganic N-containing small molecules
    Jing, Huijuan
    Long, Jun
    Gao, Dunfeng
    Wang, Guoxiong
    Xiao, Jianping
    SCIENCE CHINA-CHEMISTRY, 2025,
  • [30] Electrocatalytic Urea Synthesis with 63.5 % Faradaic Efficiency and 100 % N-Selectivity via One-step C-N coupling
    Zhang, Xiaoran
    Zhu, Xiaorong
    Bo, Shuowen
    Chen, Chen
    Cheng, Kai
    Zheng, Jianyun
    Li, Shuang
    Tu, Xiaojin
    Chen, Wei
    Xie, Chao
    Wei, Xiaoxiao
    Wang, Dongdong
    Liu, Yingying
    Chen, Pinsong
    Jiang, San Ping
    Li, Yafei
    Liu, Qinghua
    Li, Conggang
    Wang, Shuangyin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (33)