Recent progress in electrocatalytic C-N coupling of CO2 and inorganic N-containing small molecules

被引:0
|
作者
Jing, Huijuan [1 ]
Long, Jun [1 ]
Gao, Dunfeng [1 ,2 ]
Wang, Guoxiong [1 ]
Xiao, Jianping [1 ,2 ]
机构
[1] Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
carbon dioxide; inorganic nitrogenous species; electrochemical C-N coupling reactions; high-value-added chemicals; reaction mechanisms; GAS-DIFFUSION ELECTRODES; CARBON-DIOXIDE; ELECTROCHEMICAL SYNTHESIS; NITRITE IONS; SIMULTANEOUS REDUCTION; UREA PRODUCTION; NITRATE IONS; ELECTROREDUCTION; CONVERSION; EFFICIENT;
D O I
10.1007/s11426-024-2539-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conversion and utilization of carbon dioxide (CO2) is one of the central topics in the energy and environmental research community. The development of electrocatalytic CO2 reduction technology is expected to bring more economic and environmental benefits to the carbon-neutral policy. Although researchers have conducted extensive and in-depth studies on the electrocatalytic CO2 reduction to derive diverse carbonaceous products such as C1 and C2+, the introduction of inorganic nitrogenous molecules in the electrocatalytic CO2 reduction can further expand the production of more valuable C-N bond-containing chemicals, such as amides, amines, and urea. This review focuses on the research progress in the electrochemical C-N coupling of CO2 with diverse nitrogenous small molecules (NH3, N2, NO, NO2-, and NO3-) in aqueous solution. The C-N coupling mechanisms and electrocatalytic performance of catalysts towards different products have been discussed in depth from both computational and experimental aspects. On this basis, the research directions and prospects in this field are proposed, aiming to provide valuable insights into future research on electrocatalytic C-N coupling.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Recent progress in C-N coupling for electrochemical CO2 reduction with inorganic nitrogenous species in aqueous solution
    Liu, Shuxia
    Wang, Tanyuan
    Elbaz, Lior
    Li, Qing
    MATERIALS REPORTS: ENERGY, 2023, 3 (01):
  • [2] Synthesis of High Value-Added Chemicals Via Electrocatalytic C-N Coupling Involving CO2 and Nitrogen-Containing Small Molecules
    Wang, Xihua
    Wang, Yong
    Li, Pengsong
    Zhang, Xiangda
    Liu, Jiyuan
    Hou, Yuqing
    Zhang, Yichao
    Zhu, Qinggong
    Han, Buxing
    CHEMCATCHEM, 2024, 16 (22)
  • [3] Electrochemical C-N coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds
    Peng, Xianyun
    Zeng, Libin
    Wang, Dashuai
    Liu, Zhibin
    Li, Yan
    Li, Zhongjian
    Yang, Bin
    Lei, Lecheng
    Dai, Liming
    Hou, Yang
    CHEMICAL SOCIETY REVIEWS, 2023, 52 (06) : 2193 - 2237
  • [4] A review on electrocatalytic CO2 conversion via C-C and C-N coupling
    Zhang, Zhuangzhi
    Li, Sijun
    Zhang, Zheng
    Chen, Zhou
    Wang, Hua
    Meng, Xianguang
    Cui, Wenquan
    Qi, Xiwei
    Wang, Jiacheng
    CARBON ENERGY, 2024, 6 (02)
  • [5] Dual-Sites Tandem Catalysts for C-N Bond Formation via Electrocatalytic Coupling of CO2 and Nitrogenous Small Molecules
    Fu, Jiaju
    Yang, Yan
    Hu, Jin-Song
    ACS MATERIALS LETTERS, 2021, 3 (10): : 1468 - 1476
  • [6] Accessing Organonitrogen Compounds via C-N Coupling in Electrocatalytic CO2 Reduction
    Tao, Zixu
    Rooney, Conor L.
    Liang, Yongye
    Wang, Hailiang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (47) : 19630 - 19642
  • [7] Electrocatalytic synthesis of C-N coupling compounds from CO2 and nitrogenous species
    Zhang, Zheng
    Li, Danyang
    Tu, Yunchuan
    Deng, Jiao
    Bi, Huiting
    Yao, Yongchao
    Wang, Yan
    Li, Tingshuai
    Luo, Yongsong
    Sun, Shengjun
    Zheng, Dongdong
    Carabineiro, Sonia A. C.
    Chen, Zhou
    Zhu, Junjiang
    Sun, Xuping
    SUSMAT, 2024, 4 (02):
  • [8] Recent progress in electrochemical C-N coupling reactions
    Zhong, Yuan
    Xiong, Hailong
    Low, Jingxiang
    Long, Ran
    Xiong, Yujie
    ESCIENCE, 2023, 3 (01):
  • [9] Recent Advances in Electrocatalytic C-N Coupling for Urea Synthesis
    Li, Qiuyue
    Liu, Jingjing
    Wu, Ze
    Deng, Aomeng
    Liu, Jiani
    Chen, Tian
    Wei, Jianlong
    Zhang, Yiqiong
    Liu, Hanwen
    CHEMSUSCHEM, 2025, 18 (06)
  • [10] Electrocatalytic Urea Synthesis via C-N Coupling from CO2 and Nitrogenous Species
    Wang, Yujie
    Chen, Dawei
    Chen, Chen
    Wang, Shuangyin
    ACCOUNTS OF CHEMICAL RESEARCH, 2023, 57 (02) : 247 - 256