Electrocatalytic synthesis of C-N coupling compounds from CO2 and nitrogenous species

被引:41
|
作者
Zhang, Zheng [1 ]
Li, Danyang [1 ]
Tu, Yunchuan [2 ]
Deng, Jiao [3 ]
Bi, Huiting [1 ]
Yao, Yongchao [4 ]
Wang, Yan [4 ]
Li, Tingshuai [4 ]
Luo, Yongsong [5 ]
Sun, Shengjun [5 ]
Zheng, Dongdong [5 ]
Carabineiro, Sonia A. C. [6 ]
Chen, Zhou [7 ,8 ]
Zhu, Junjiang [1 ,9 ]
Sun, Xuping [4 ,5 ,10 ]
机构
[1] Wuhan Text Univ, Coll Chem & Chem Engn, Hubei Key Lab Biomass Fibers & Ecodyeing & Finish, Wuhan, Hubei, Peoples R China
[2] Chongqing Univ, Sch Chem & Chem Engn, Chongqing, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, I Lab, Vacuum Interconnected Nanotech Workstn Nano X, Suzhou, Jiangsu, Peoples R China
[4] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Sichuan, Peoples R China
[5] Shandong Normal Univ, Coll Chem Chem Engn & Mat Sci, Jinan, Shandong, Peoples R China
[6] Univ NOVA Lisboa, NOVA Sch Sci & Technol, Dept Chem, LAQV REQUIMTE, P-2829516 Caparica, Portugal
[7] Xiamen Univ, Coll Mat, Xiamen, Fujian, Peoples R China
[8] Xiamen Univ, Coll Mat, Xiamen 361005, Fujian, Peoples R China
[9] Wuhan Text Univ, Coll Chem & Chem Engn, Hubei Key Lab Biomass Fibers & Ecodyeing & Finishi, Wuhan 430200, Hubei, Peoples R China
[10] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
来源
SUSMAT | 2024年 / 4卷 / 02期
基金
中国国家自然科学基金;
关键词
C-N coupling; CO2; reduction; electrocatalysis; nitrogenous species; reaction mechanism; CARBON-DIOXIDE; ELECTROCHEMICAL SYNTHESIS; CATALYTIC SYNTHESIS; AMMONIA-SYNTHESIS; CARBOXYLIC-ACIDS; NITRITE IONS; REDUCTION; EFFICIENT; NITRATE; UREA;
D O I
10.1002/sus2.193
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrocatalytic synthesis of C-N coupling compounds from CO2 and nitrogenous species not only offers an effective avenue to achieve carbon neutrality and reduce environmental pollution, but also establishes a route to synthesize valuable chemicals, such as urea, amide, and amine. This innovative approach expands the application range and product categories beyond simple carbonaceous species in electrocatalytic CO2 reduction, which is becoming a rapidly advancing field. This review summarizes the research progress in electrocatalytic urea synthesis, using N-2, NO2-, and NO3- as nitrogenous species, and explores emerging trends in the electrosynthesis of amide and amine from CO2 and nitrogen species. Additionally, the future opportunities in this field are highlighted, including electrosynthesis of amino acids and other compounds containing C-N bonds, anodic C-N coupling reactions beyond water oxidation, and the catalytic mechanism of corresponding reactions. This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions, confirming the superiority of this electrochemical method over the traditional techniques.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Electrocatalytic Urea Synthesis via C-N Coupling from CO2 and Nitrogenous Species
    Wang, Yujie
    Chen, Dawei
    Chen, Chen
    Wang, Shuangyin
    ACCOUNTS OF CHEMICAL RESEARCH, 2023, 57 (02) : 247 - 256
  • [2] Toward effective electrocatalytic C-N coupling for the synthesis of organic nitrogenous compounds using CO2 and biomass as carbon sources
    Jiang, Hao
    Wu, Xu
    Zhang, Heng
    Yan, Qiong
    Li, Hui
    Ma, Tianyi
    Yang, Song
    SUSMAT, 2023, 3 (06): : 781 - 820
  • [3] Accessing Organonitrogen Compounds via C-N Coupling in Electrocatalytic CO2 Reduction
    Tao, Zixu
    Rooney, Conor L.
    Liang, Yongye
    Wang, Hailiang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (47) : 19630 - 19642
  • [4] Electrochemical C-N coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds
    Peng, Xianyun
    Zeng, Libin
    Wang, Dashuai
    Liu, Zhibin
    Li, Yan
    Li, Zhongjian
    Yang, Bin
    Lei, Lecheng
    Dai, Liming
    Hou, Yang
    CHEMICAL SOCIETY REVIEWS, 2023, 52 (06) : 2193 - 2237
  • [5] Electrocatalytic C-N coupling on hybrid double-atom catalysts for methylamine synthesis from CO2 and NO
    Gu, Yongbing
    Ma, Qingshuang
    Li, Xinmeng
    Ye, Xuanhan
    Zhang, Rongxin
    Liu, Jiayi
    Luo, Xia
    Yao, Qiufang
    Cao, Yongyong
    APPLIED SURFACE SCIENCE, 2025, 692
  • [6] Recent progress in C-N coupling for electrochemical CO2 reduction with inorganic nitrogenous species in aqueous solution
    Liu, Shuxia
    Wang, Tanyuan
    Elbaz, Lior
    Li, Qing
    MATERIALS REPORTS: ENERGY, 2023, 3 (01):
  • [7] A review on electrocatalytic CO2 conversion via C-C and C-N coupling
    Zhang, Zhuangzhi
    Li, Sijun
    Zhang, Zheng
    Chen, Zhou
    Wang, Hua
    Meng, Xianguang
    Cui, Wenquan
    Qi, Xiwei
    Wang, Jiacheng
    CARBON ENERGY, 2024, 6 (02)
  • [8] Electrocatalytic C-N Coupling for Urea Synthesis
    Chen, Chen
    He, Nihan
    Wang, Shuangyin
    SMALL SCIENCE, 2021, 1 (11):
  • [9] Dual-Sites Tandem Catalysts for C-N Bond Formation via Electrocatalytic Coupling of CO2 and Nitrogenous Small Molecules
    Fu, Jiaju
    Yang, Yan
    Hu, Jin-Song
    ACS MATERIALS LETTERS, 2021, 3 (10): : 1468 - 1476
  • [10] Electrocatalytic Synthesis of Organonitrogen Compounds via C-N Coupling from NOx and Carbon Source
    Zhou, Yiyang
    Ding, Chunmei
    Li, Can
    CHEMCATCHEM, 2024, 16 (23)