Electrocatalytic synthesis of C-N coupling compounds from CO2 and nitrogenous species

被引:41
|
作者
Zhang, Zheng [1 ]
Li, Danyang [1 ]
Tu, Yunchuan [2 ]
Deng, Jiao [3 ]
Bi, Huiting [1 ]
Yao, Yongchao [4 ]
Wang, Yan [4 ]
Li, Tingshuai [4 ]
Luo, Yongsong [5 ]
Sun, Shengjun [5 ]
Zheng, Dongdong [5 ]
Carabineiro, Sonia A. C. [6 ]
Chen, Zhou [7 ,8 ]
Zhu, Junjiang [1 ,9 ]
Sun, Xuping [4 ,5 ,10 ]
机构
[1] Wuhan Text Univ, Coll Chem & Chem Engn, Hubei Key Lab Biomass Fibers & Ecodyeing & Finish, Wuhan, Hubei, Peoples R China
[2] Chongqing Univ, Sch Chem & Chem Engn, Chongqing, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, I Lab, Vacuum Interconnected Nanotech Workstn Nano X, Suzhou, Jiangsu, Peoples R China
[4] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Sichuan, Peoples R China
[5] Shandong Normal Univ, Coll Chem Chem Engn & Mat Sci, Jinan, Shandong, Peoples R China
[6] Univ NOVA Lisboa, NOVA Sch Sci & Technol, Dept Chem, LAQV REQUIMTE, P-2829516 Caparica, Portugal
[7] Xiamen Univ, Coll Mat, Xiamen, Fujian, Peoples R China
[8] Xiamen Univ, Coll Mat, Xiamen 361005, Fujian, Peoples R China
[9] Wuhan Text Univ, Coll Chem & Chem Engn, Hubei Key Lab Biomass Fibers & Ecodyeing & Finishi, Wuhan 430200, Hubei, Peoples R China
[10] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
来源
SUSMAT | 2024年 / 4卷 / 02期
基金
中国国家自然科学基金;
关键词
C-N coupling; CO2; reduction; electrocatalysis; nitrogenous species; reaction mechanism; CARBON-DIOXIDE; ELECTROCHEMICAL SYNTHESIS; CATALYTIC SYNTHESIS; AMMONIA-SYNTHESIS; CARBOXYLIC-ACIDS; NITRITE IONS; REDUCTION; EFFICIENT; NITRATE; UREA;
D O I
10.1002/sus2.193
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrocatalytic synthesis of C-N coupling compounds from CO2 and nitrogenous species not only offers an effective avenue to achieve carbon neutrality and reduce environmental pollution, but also establishes a route to synthesize valuable chemicals, such as urea, amide, and amine. This innovative approach expands the application range and product categories beyond simple carbonaceous species in electrocatalytic CO2 reduction, which is becoming a rapidly advancing field. This review summarizes the research progress in electrocatalytic urea synthesis, using N-2, NO2-, and NO3- as nitrogenous species, and explores emerging trends in the electrosynthesis of amide and amine from CO2 and nitrogen species. Additionally, the future opportunities in this field are highlighted, including electrosynthesis of amino acids and other compounds containing C-N bonds, anodic C-N coupling reactions beyond water oxidation, and the catalytic mechanism of corresponding reactions. This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions, confirming the superiority of this electrochemical method over the traditional techniques.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Oxygen Vacancy-Mediated Selective C-N Coupling toward Electrocatalytic Urea Synthesis
    Wei, Xiaoxiao
    Wen, Xiaojian
    Liu, Yingying
    Chen, Chen
    Xie, Chao
    Wang, Dongdong
    Qiu, Mengyi
    He, Nihan
    Zhou, Peng
    Chen, Wei
    Cheng, Jun
    Lin, Hongzhen
    Jia, Jianfeng
    Fu, Xian-Zhu
    Wang, Shuangyin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (26) : 11530 - 11535
  • [32] Electron Deficiency is More Important than Conductivity in C-N Coupling for Electrocatalytic Urea Synthesis
    Wang, Yujie
    Zhu, Xiaorong
    An, Qizheng
    Zhang, Xiaoran
    Wei, Xiaoxiao
    Chen, Chen
    Li, Han
    Chen, Dawei
    Zhou, Yangyang
    Liu, Qinghua
    Shao, Huaiyu
    Wang, Shuangyin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (49)
  • [33] Electrocatalytic Synthesis of Substituted Pyrazoles via Hypervalent Iodine Mediated Intramolecular C-N Coupling
    Paveliev, Stanislav A.
    Segida, Oleg O.
    Bityukov, Oleg, V
    Tang, Hai-Tao
    Pan, Ying-Ming
    Nikishin, Gennady, I
    Terent'ev, Alexander O.
    ADVANCED SYNTHESIS & CATALYSIS, 2022, 364 (22) : 3910 - 3916
  • [34] Beyond CO 2 reduction: Electrochemical C-N coupling reaction for
    Kim, Dohun
    Eo, Jungsu
    Lim, Seolha
    Nam, Dae-Hyun
    CURRENT OPINION IN ELECTROCHEMISTRY, 2024, 46
  • [35] Hydrogenation of CO2 to alcohol species over Co@Co3O4/C-N catalysts
    Lian, Yun
    Fang, Tingfeng
    Zhang, Yuhua
    Liu, Bing
    Li, Jinlin
    JOURNAL OF CATALYSIS, 2019, 379 : 46 - 51
  • [36] Electrocatalytic Reduction of CO2 to Value-Added Chemicals via C-C/N Coupling
    Liu, Junling
    Zhang, Xuejing
    Yang, Rui
    Yang, Yongan
    Wang, Xi
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2023, 4 (08):
  • [37] Tailoring Activation Intermediates of CO2 Initiates C-N Coupling for Highly Selective Urea Electrosynthesis
    Zhao, Chao
    Jin, Yu
    Yuan, Jingkang
    Hou, Qilin
    Li, He
    Yan, Xiaoqing
    Ou, Honghui
    Yang, Guidong
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (10) : 8871 - 8880
  • [38] Are transition metal phthalocyanines active for urea synthesis via electrocatalytic coupling of CO2 and N2?
    Huang, Yungan
    Fan, Ting
    Ji, Yongfei
    Physical Chemistry Chemical Physics, 2024, 27 (01) : 531 - 538
  • [39] Electrocatalytic Coupling of Nitrate and Formaldehyde for Hexamethylenetetramine Synthesis via C-N Bond Construction and Ring Formation
    Pan, Yuping
    Zou, Yuqin
    Ma, Chongyang
    Nga, Ta Thi Thuy
    An, Qizheng
    Miao, Rong
    Xia, Zhongcheng
    Fan, Yun
    Dong, Chung-Li
    Liu, Qinghua
    Wang, Shuangyin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (28) : 19572 - 19579
  • [40] Theoretical insights on C-N coupling mechanism and guidance for screening the catalysts of electrocatalytic urea synthesis by descriptors
    Zheng, Meng
    Ma, Haiqing
    Li, Zhiming
    Yu, Hongan
    Nie, Long
    Ye, Chenliang
    Chen, Xiaoyu
    Wang, Jin
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 342